Advertisement for orthosearch.org.uk
Results 1 - 20 of 44
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 41 - 41
2 Jan 2024
Singh S Dhar S Kale S
Full Access

The management of comminuted metaphyseal fractures is a technical challenge and satisfactory outcomes of such fixations often remain elusive. The small articular fragments and bone loss often make it difficult for standard fixation implants for proper fixation. We developed a novel technique to achieve anatomical reduction in multiple cases of comminuted metaphyseal fractures at different sites by employing the cantilever mechanism with the help of multiple thin Kirschner wires augmented by standard fixation implants. We performed a retrospective study of 10 patients with different metaphyseal fractures complicated by comminution and loss of bone stock. All patients were treated with the help of cantilever mechanism using multiple Kirschner wires augmented by compression plates. All the patients were operated by the same surgeon between November 2020 to March 2021 and followed up till March 2023. Surgical outcomes were evaluated according to the clinical and radiological criteria. A total of 10 patients were included in the study. Since we only included patients with highly unstable and comminuted fractures which were difficult to fix with traditional methods, the number of patients in the study were less. All 10 patients showed satisfactory clinical and radiological union at the end of the study with good range of motion. One of the patient in the study had post-operative wound complication which was managed conservatively with regular dressings and oral antibiotics. Comminuted metaphyseal fractures might differ in pattern and presentation with every patient and there can be no standard treatment for all. The cantilever technique of fracture fixation is based on the principle of cantilever mechanism used in bridges and helps achieve good anatomical reduction and fixation. It provides a decent alternative when standard modes of fixation don't give desired result owing to comminuted nature of fractures and deficiency of bone stock


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 477 - 477
1 Aug 2008
Muthian S Ahmed E
Full Access

Scheuermann’s disease is defined as thoracic kyphosis greater than 45° with greater than 5° of anterior wedging in 3 consecutive vertebrae. We describe a new technique for the surgical treatment of thoracic kyphosis. Eleven patients were treated in our series. The average preoperative kyphotic angle was 83.3 degrees (58–94 degrees). Multiple posterior closing wedge osteotomy was performed and four rods (two proximal and two distal) were contoured and fixed to pedicle screws and the deformity reduced by the cantilever technique. The average postoperative kyphotic angle was 41.1 degrees (range 25–54 degrees) giving an average correction of 42.2 degrees per patient. The average postop lumbar angle was 51.8 degrees (range 20–70 degrees). The average follow up time was 25.3 months (range 6–60 months). At follow up the kyphotic angle was found to be 42.8 degrees average (range 24–55 degrees) and the lumbar angle was 57.6 degrees average (range 42–70 degrees). We find this technique simple and effective in reducing curves of high magnitude and the curve was maintained in the long term. Our complication rate was comparable to that quoted in literature. This technique is superior as it avoids sudden stretching of the anterior vasculature and possible rupture of the anterior longitudinal ligament (ALL) and provides correction at multiple levels, avoiding build-up of stress at any single level


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 70 - 70
1 Mar 2009
Muthian S Ahmed E
Full Access

Introduction: Scheuermann’s disease is defined as thoracic kyphosis greater than 45° with greater than 5° of anterior wedging in 3 consecutive vertebrae. We describe a new technique for the surgical treatment of thoracic kyphosis due to Scheuermann’s disease. Eleven patients were treated in our series. Results: The average preoperative kyphotic angle was 83.3 degrees (58 – 94 degrees). Multiple posterior closing wedge osteotomy was performed and four rods (two proximal and two distal) were contoured and fixed to pedicle screws and the deformity reduced by the cantilever technique. The average postoperative kyphotic angle was 41.1 degrees (range 25–54 degrees) giving an average correction of 42.2 degrees per patient. The average postop lumbar angle was 51.8 degrees (range 20–70 degrees). The average follow up time was 25.3 months (range 6–60 months). At follow up the kyphotic angle was found to be 42.8 degrees average (range 24–55 degrees) and the lumbar angle was 57.6 degrees average (range 42–70 degrees). This technique is superior as it avoids sudden stretching of the anterior vasculature and possible rupture of the anterior longitudinal ligament (ALL) and provides correction at multiple levels, avoiding build-up of stress at any single level. Conclusion: We find this technique simple and effective in reducing curves of high magnitude and the reduction was maintained in the long term. Our complication rate was comparable to that quoted in literature


Background: context: In Adolescent Idiopathic Scoliosis (AIS), the correction of thoracic hypokyphosis with hooks instrumentation and also with pedicle screws system is moderate. Purpose: To compare radiographic results between two instrumentations with thoracic screws using two different. Methods: of reduction: cantilever reduction (CR group– MOSS-MIAMI system) versus simultaneous translation on two rods (ST group – PASSMED system). Study design: Retrospective comparative analysis of two consecutive cohorts of patients treated by the same surgeon at a single hospital. Patient sample: Forty-two adolescent idiopathic thoracic scoliosis (Lenke type 1, 2 and 3) underwent a posterior spinal fusion and instrumentation: 20 patients in CR group and 22 patients in the ST group. The minimum follow-up was two years (Mean follow-up: 71 months and 47 months). Outcomes measures: Thoracic sagittal kyphosis between T4 and T12 and Cobb angle measurements of major and minor curves evaluated preoperatively, postoperatively and the final visit, by an independent observer. Methods: In CR group, we have used polyaxial pedicle screws and one or two monoaxial thoracic hooks. In ST group, we have used polyaxial pedicle screws and poly-axial claws which provide same stability than screws. Three groups of preoperative kyphosis were generated: 11 patients with severe hypokyphosis (T4–T12 < 10°) (5 in CR group and 6 in ST group); 11 patients with mild hypokyphosis (between 10 and 20°) (respectively 4° vs 7°) and 20 with normokyphosis (> 20°) (respectively 11 vs 9). Results: At the final follow-up, for patients with a severe preoperative hypokyphosis, the mean gain was 14 degrees in the CR group (8° preop to 22° postop) and 25° in the ST group (6° preop to 31 postop) (p< 0.05). For patients xith mild hypokyphosis, te mean gains were respectively 7 degrees (16° preop to 23° postop) and 18° (16° preop to 34° postop) (p< 0.05). After surgery, 3 patients of CR group had hypokyphosis alors que all patients had normal kyphosis (> 20°) in the ST group. In the coronal plane, the mean correction of scoliosis are similar in the two groups (75% vs 69% p=NS). Discussion and Conclusion: In posterior instrumentation for AIS, simultaneous reduction on two rods provides a better correction of the thoracic kyphosis than the cantilever reduction in patient with preoperative hypokyphosis. This surgical technique seems to restore thoracic normal kyphosis


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 79 - 79
1 Mar 2021
Doodkorte R Roth A van Rietbergen B Arts J Lataster L van Rhijn L Willems P
Full Access

Complications after spinal fusion surgery are common, with implant loosening occurring in up to 50% of osteoporotic patients. Pedicle screw fixation strength reduces as a result of decreased trabecular bone density, whereas sublaminar wiring is less affected by these changes. Therefore, pedicle screw augmentation with radiopaque sublaminar wires (made with Dyneema Purity® Radiapque fibers, DSM Biomedical, Geleen, the Netherlands) may improve fixation strength. Furthermore, sublaminar tape could result in a gradual motion transition to distribute stress over multiple levels and thereby reduce implant loosening. The objective of this study is to test this hypothesis in a novel experimental setup in which a cantilever bending moment is applied to individual human vertebrae. Thirty-eight human cadaver vertebrae were stratified into four different groups: ultra-high molecular weight polyethylene sublaminar tape (ST), pedicle screw (PS), metal sublaminar wire (SW) and pedicle screw reinforced with sublaminar tape (PS+ST). The vertebrae were individually embedded in resin, and a cantilever bending moment was applied bilaterally through the spinal rods using a universal material testing machine. This cantilever bending setup closely resembles the loading of fixators at transitional levels of spinal instrumentation. The pull-out strength of the ST (3563 ± 476N) was not significantly different compared to PS, SW or PS+ST. The PS+ST group had a significantly higher pull-out strength (4522 ± 826N) compared to PS (2678 ± 292N) as well as SW (2931 ± 250N). The higher failure strength of PS + ST compared to PS indicates that PS augmentation with ST may be an effective measure to reduce the incidence of screw pullout, even in osteoporotic vertebrae. Moreover, the lower stiffness of sublaminar fixation techniques and the absence of damage to the cortices in the ST group suggest that ST as a stand-alone fixation technique in adult spinal deformity surgery may also be clinically feasible and offer clinical benefits


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 1 - 1
11 Apr 2023
Mischler D Knecht M Varga P
Full Access

Surgical education of fracture fixation biomechanics relies mainly on simplified illustrations to distill the essence of the underlying principles. These mostly consist of textbook drawings or hands-on exercises during courses, both with unique advantages such as broad availability and haptics, respectively. Computer simulations are suited to bridge these two approaches; however, the validity of such simulations must be guaranteed to teach the correct aspects. Therefore, the aim of this study was to validate finite element (FE) simulations of bone-plate constructs to be used in surgical education in terms of fracture gap movement and implant surface strain. The validation procedure was conducted in a systematic and hierarchical manner with increasing complexity. First, the material properties of the isolated implant components were determined via four-point bending of the plate and three-point bending of the screw. Second, stiffness of the screw-plate interface was evaluated by means of cantilever bending to determine the properties of the locking mechanism. Third, implant surface strain and fracture gap motion were measured by testing various configurations of entire fixation constructs on artificial bone (Canevasit) in axial compression. The determined properties of the materials and interfaces assessed in these experiments were then implemented into FE models of entire fixation constructs with different fracture width and screw configurations. The FE-predicted implant surface strains and fracture gap motions were compared with the experimental results. The simulated results of the different construct configurations correlated strongly with the experimentally measured fracture gap motions (R. 2. >0.99) and plate surface strains (R. 2. >0.95). In a systematic approach, FE model validation was achieved successfully in terms of fracture gap motion and implant deformation, confirming trustworthiness for surgical education. These validated models are used in a novel online education tool OSapp (. https://osapp.ch/. ) to illustrate and explain the biomechanical principles of fracture fixations in an interactive manner


Full Access

Matrix metalloproteinase enzymes (MMPs) play a crucial role in the remodeling of articular cartilage, contributing also to osteoarthritis (OA) progression. The pericellular matrix (PCM) is a specialized space surrounding each chondrocyte, containing collagen type VI and perlecan. It acts as a transducer of biomechanical and biochemical signals for the chondrocyte. This study investigates the impact of MMP-2, -3, and -7 on the integrity and biomechanical characteristics of the PCM. Human articular cartilage explants (n=10 patients, ethical-nr.:674/2016BO2) were incubated with activated MMP-2, -3, or -7 as well as combinations of these enzymes. The structural degradative effect on the PCM was assessed by immunolabelling of the PCM's main components: collagen type VI and perlecan. Biomechanical properties of the PCM in form of the elastic moduli (EM) were determined by means of atomic force microscopy (AFM), using a spherical cantilever tip (2.5µm). MMPs disrupted the PCM-integrity, resulting in altered collagen type VI and perlecan structure and dispersed pericellular arrangement. A total of 3600 AFM-measurements revealed that incubation with single MMPs resulted in decreased PCM stiffness (p<0.001) when compared to the untreated group. The overall EM were reduced by ∼36% for all the 3 individual enzymes. The enzyme combinations altered the biomechanical properties at a comparable level (∼36%, p<0.001), except for MMP-2/-7 (p=0.202). MMP-induced changes in the PCM composition have a significant impact on the biomechanical properties of the PCM, similar to those observed in early OA. Each individual MMP was shown to be highly capable of selectively degrading the PCM microenvironment. The combination of MMP-2 and -7 showed a lower potency in reducing the PCM stiffness, suggesting a possible interplay between the two enzymes. Our study showed that MMP-2, -3, and -7 play a direct role in the functional and structural remodeling of the PCM. Acknowledgements: This work was supported by the Faculty of Medicine of the University of Tübingen (grant number.: 2650-0-0)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 107 - 107
2 Jan 2024
Pastor T Zderic I Berk T Souleiman F Vögelin E Beeres F Gueorguiev B Pastor T
Full Access

Recently, a new generation of superior clavicle plates was developed featuring the variable-angle locking technology for enhanced screw positioning and optimized plate-to-bone fit design. On the other hand, mini-fragment plates used in dual plating mode have demonstrated promising clinical results. However, these two bone-implant constructs have not been investigated biomechanically in a human cadaveric model. Therefore, the aim of the current study was to compare the biomechanical competence of single superior plating using the new generation plate versus dual plating with low-profile mini-fragment plates. Sixteen paired human cadaveric clavicles were assigned pairwise to two groups for instrumentation with either a 2.7 mm Variable Angle Locking Compression Plate placed superiorly (Group 1), or with one 2.5 mm anterior plate combined with one 2.0 mm superior matrix mandible plate (Group 2). An unstable clavicle shaft fracture AO/OTA15.2C was simulated by means of a 5 mm osteotomy gap. All specimens were cyclically tested to failure under craniocaudal cantilever bending, superimposed with bidirectional torsion around the shaft axis and monitored via motion tracking. Initial stiffness was significantly higher in Group 2 (9.28±4.40 N/mm) compared to Group 1 (3.68±1.08 N/mm), p=0.003. The amplitudes of interfragmentary motions in terms of craniocaudal and shear displacement, fracture gap opening and torsion were significantly bigger over the course of 12500 cycles in Group 1 compared to Group 2; p≤0.038. Cycles to 2 mm shear displacement were significantly lower in Group 1 (22792±4346) compared to Group 2 (27437±1877), p=0.047. From a biomechanical perspective, low-profile 2.5/2.0 dual plates demonstrated significantly higher initial stiffness, less interfragmentary movements, and higher resistance to failure compared to 2.7 single superior variable-angle locking plates and can therefore be considered as a useful alternative for diaphyseal clavicle fracture fixation especially in unstable fracture configurations


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 35 - 35
11 Apr 2023
Pastor T Knobe M Ciric D Zderic I van de Wall B Rompen I Visscher L Link B Babst R Richards G Gueorguiev B Beeres F
Full Access

Implant removal after clavicle plating is common. Low-profile dual mini-fragment plate constructs are considered safe for fixation of diaphyseal clavicle fractures. The aim of this study was to investigate: (1) the biomechanical competence of different dual plate designs from stiffness and cycles to failure, and (2) to compare them against 3.5mm single superoanterior plating. Twelve artificial clavicles were assigned to 2 groups and instrumented with titanium matrix mandible plates as follows: group 1 (G1) (2.5mm anterior+2.0mm superior) and group 2 (G2) (2.0mm anterior+2.0mm superior). An unstable clavicle shaft fracture (AO/OTA15.2C) was simulated. Specimens were cyclically tested to failure under craniocaudal cantilever bending, superimposed with torsion around the shaft axis and compared to previous published data of 6 locked superoanterior plates tested under the same conditions (G3). Displacement (mm) after 5000 cycles was highest in G3 (10.7±0.8) followed by G2 (8.5±1.0) and G1 (7.5±1.0), respectively. Both outcomes were significantly higher in G3 as compared to both G1 and G2 (p≤0.027). Cycles to failure were highest in G3 (19536±3586) followed by G1 (15834±3492) and G2 (11104±3177), being significantly higher in G3 compared to G2 (p=0.004). Failure was breakage of one or two plates at the level of the osteotomy in all specimens. One G1 specimen demonstrated failure of the anterior plate. Both plates in other G1 specimens. Majority of G2 had fractures in both plates. No screw pullout or additional clavicle fractures were observed among specimens. Low-profile 2.0/2.0 dual plates demonstrated similar initial stiffness compared to 3.5mm single plates, however, had significantly lower failure endurance. Low-profile 2.5/2.0 dual plates showed significant higher initial stiffness and similar resistance to failure compared to 3.5mm single locked plates and can be considered as a useful alternative for diaphyseal clavicle fracture fixation. These results complement the promising results of several clinical studies


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_8 | Pages 22 - 22
1 May 2018
Fenton C Henderson D Cherkashin A Samchukov M Sharma HK
Full Access

Aim. To investigate the biomechanical behaviours of the TL-Hex & Taylor Spatial Frame (TSF) Hexapod external fixators, with comparison to traditional ring-fixator constructs. Methods. Standardised four-ring TL-Hex and TSF constructs, as well as matched ilizarov threaded-rod constructs for each set of components, were tested alone and mounted with an acrylic bone model with simulated fracture gap using fine-wires. Load-deformation properties for each construct and mode of loading were calculated and analysed statistically using ANOVA. Results and Conclusions. Under axial loading the Ilizarov construct utilising TL-Hex components demonstrated greatest rigidity followed by the TL-Hex Ilizarov using TSF components (p<0.01). Under torsional loading both hexapod frames were seen to be significantly more rigid than the Ilizarov (p<0.01), with the TSF demonstrating greater rigidity than the TL-Hex. Under cantilever bending loads the difference in rigidity seen across all constructs was less marked. When loaded with the bone model both hexapods demonstrated reduced axial rigidity as compared to Ilizarov constructs, but without any appreciable difference in translational shear strain. Under cantilever bending the Ilizarov construct using TL-Hex components p<0.01) demonstrated less translational shear strain than the TSF and TSF using Ilizarov components. In conclusion, both hexapod designs were less rigid axially, but more so under bending and torsional loads, than their Ilizarov construct counterparts, producing greater overall planar shear strain, largely due to the observed “toe-in” laxity. Overall, the TL-Hex was seen to be more rigid that the TSF under bending loads although the difference in shear strain at the fracture site was not significantly different


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXI | Pages 35 - 35
1 Jul 2012
Tsirikos AI
Full Access

Purpose of the study. Two patients with very severe thoracolumbar Scheuermann's kyphosis who developed spontaneous bony fusion across the apex of the deformity are presented and their treatment, as well as surgical outcome is discussed. Summary of Background Data. Considerable debate exists regarding the pathogenesis, natural history and treatment of Scheuermann's kyphosis. Surgical correction is indicated in the presence of severe kyphosis which carries the risk of neurological complications, persistent back pain and significant cosmetic deformity. Methods. We reviewed the medical notes and radiographs of 2 adolescent patients with severe thoracolumbar Scheuermann's kyphosis who developed spontaneous posterior and anteroposterior fusion across the apex of the deformity. Results. Patient 1. A male patient aged 17 years and 11 months underwent kyphosis correction when the deformity measured 115o and only corrected to 100o on supine hyperextension radiograph against the bolster; he had a small associated scoliosis. The surgery involved a combined single-stage anterior and posterior spinal arthrodesis T4-L3 with the use of posterior pedicle hook/screw/rod instrumentation and autologous rib graft. The anterior longitudinal ligament was ossified from T10 to L1 with bridging osteophytes extending circumferentially from T11 to T12 at the apex of kyphosis and displacing the major vessels anteriorly. The intervertebral discs from T9 to T12 were very stenotic and immobile. The osteophytes were excised both on the convexity and concavity of the associated thoracolumbar scoliosis. The anterior longitudinal ligament was released and complete discectomies back to the posterior longitudinal ligament were performed from T7 to L1. During the posterior exposure, the spine was found to be spontaneously fused across the apex of the kyphosis from T9 to L1. There were no congenital vertebral anomalies. Extensive posterior apical closing wedge osteotomies were performed from T7 to T12. The fused facets and ossified ligamentum flavum were excised and the spine was mobilised at completion of the anterior and posterior osteotomies. The kyphosis was corrected using a cantilever maneuver from proximal to distal under spinal cord monitoring. Excellent correction to 58o was achieved and maintained at follow-up. Autologous rib graft was used to enhance a solid bony fusion. Patient 2. A female patient aged 18 years and one month underwent kyphosis correction when the deformity measured 115o and only corrected to 86o on supine hyperextension radiograph against the bolster; she had a small thoracolumbar scoliosis. The surgery involved a single-stage posterior spinal arthrodesis T2-L4 with the use of posterior pedicle hook/screw/rod instrumentation and autologous iliac crest bone. The spine was spontaneously fused across the apex of kyphosis from T9 to L1. There were no congenital vertebral anomalies. Extensive posterior apical closing wedge osteotomies were performed from T6 to T12. The fused facets and ossified ligamentum flavum were excised and the spine was mobilised at completion of the osteotomies. The kyphosis was corrected using a cantilever maneuver from proximal to distal under spinal cord monitoring. Excellent correction to 60o was achieved and maintained at follow-up. Autologous iliac crest graft was used to achieve a solid bony fusion. In both patients the preoperative MRI assessed the intraspinal structures but failed to diagnose the solid fusion across the posterior bony elements at the apex of kyphosis. A CT scan with 3D reconstruction would have illustrated the bony anatomy across the kyphosis giving valuable information to assist surgical planning. This is recommended in the presence of rigid thoracolumbar Scheuermann's kyphosis which does not correct in hyperextension, especially if the plain radiograph shows anterior bridging osteophytes. Conclusion. Spontaneous posterior or anteroposterior fusion can occur across the apex of severe thoracolumbar Scheuermann's kyphosis; this should be taken into account when surgical correction is anticipated. The bony ankylosis may represent the natural history of an extreme deformity as an attempt of the spine to auto-stabilise. A combination of factors including a rigid deformity, which limits significantly active movement of the spine, as well as anterior vertebral body wedging with severe adjacent disc stenosis which induces bridging osteophyte formation may result in the development of spontaneous fusion across the apex of the kyphosis either posteriorly or anteroposteriorly. In the presence of an isolated posterior fusion, segmental posterior closing wedge osteotomies with complete excision of the ossified ligamentum flavum and fused facets should mobilise the thoracolumbar spine and allow for kyphosis correction. An additional anterior spinal release including complete discectomies, resection of the anterior longitudinal ligament and osteophytes is required if the bony fusion extends anteroposteriorly. Patients with Scheuermann's kyphosis should be ideally treated at an earlier stage and with a lesser degree of deformity so that this ossification process is prevented


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 51 - 51
1 Jun 2017
Di Laura A Hothi H Henckel J Liow M Kwon Y Skinner J Hart A
Full Access

Dual-taper implants provide surgeons with options to optimise patients' anatomy intraoperatively but are at risk of early revision due to adverse tissue reactions to corrosion debris. Risk factors for failure and linkage with symptoms however are not fully understood. We related retrieval findings to clinical and implant variables. This study involved 88 failed dual-taper implants with TMZF femoral stems and cobalt-chromium necks, revised for pain, elevated Co (median = 7.3μg/L) and Cr (median = 2.15μg/L) ions levels and fluid collection on MRI. Stem-neck surfaces were assessed for: 1) severity of corrosion using a published visual method and 2) severity of material lost and location of damage with a roundness-measuring machine. Five traces were taken on each round section of the taper surface at 45° increments to compute the relative depth of damage. The total area of these traces provided a measure of surface damage for comparative purposes. The stem-neck taper junctions were severely corroded; the deepest areas of damage were on the inferior-proximal and superior-distal part of the necks, compatible with cantilever bending. Elemental analysis revealed chromium rich deposits indicative of corrosion processes and metal transfer from the stem to the neck. There was a positive correlation between the severity of damage and time of implantation (p<0.0001). Co and Cr levels in the blood were also strongly correlated (p<0.0001, p=0.0002). No other implant or patient variables were linked. The stem-neck junction was severely corroded in all cases. The severity and location of the areas of surface damage did not link with implant or patient characteristics in this big cohort suggesting that the design and material combination is the predominant source of failure in these designs. Dual-taper hips are severely corroded at the stem-neck junction; this appears to be due to the use of a TMZF alloy stem paired with CoCrMo necks


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 7 - 7
1 May 2016
Griffiths J Abouel-Enin S Yates P Carey-Smith R Quaye M Latham J
Full Access

In a society whereby the incidence of obesity is increasing and medico-legal implications of treatment failure are more frequently ending with the consulting doctor, clarity is required as to any restrictions placed on common orthopaedic implants by manufacturing companies. The aim of this study was to identify any restrictions placed on the commonly used femoral stem implants in total hip replacement (THR) surgery, by the manufacturers, based on patient weight. The United Kingdom (UK) National Joint Registry (NJR) was used to identify the five most commonly used cemented and uncemented femoral stem implants during 2012. The manufacturing companies responsible for these implants were asked to provide details of any weight restrictions placed on these implants. The Corail size 6 stem is the only implant to have a weight restriction (60Kg). All other stems, both cemented and uncemented, were free of any restrictions. Fatigue fracture of the femoral stem has been well documented in the literature, particularly involving the high nitrogen stainless steel cemented femoral stems and to a lesser extent the cemented cobalt chrome and uncemented femoral stems. In all cases excessive patient weight leading to increased cantilever bending of the femoral stem was thought to be a major factor contributing to the failure mechanism. From the current literature there is clearly an association between excessive patient weight and fatigue failure of the femoral stem. We suggest avoiding, where possible, the insertion of small stems (particularly cemented stems) and large offset stems (particularly those with a modular neck) in overweight patients


Bone & Joint Open
Vol. 5, Issue 6 | Pages 489 - 498
12 Jun 2024
Kriechling P Bowley ALW Ross LA Moran M Scott CEH

Aims

The purpose of this study was to compare reoperation and revision rates of double plating (DP), single plating using a lateral locking plate (SP), or distal femoral arthroplasty (DFA) for the treatment of periprosthetic distal femur fractures (PDFFs).

Methods

All patients with PDFF primarily treated with DP, SP, or DFA between 2008 and 2022 at a university teaching hospital were included in this retrospective cohort study. The primary outcome was revision surgery for failure following DP, SP, or DFA. Secondary outcome measures included any reoperation, length of hospital stay, and mortality. All basic demographic and relevant implant and injury details were collected. Radiological analysis included fracture classification and evaluation of metaphyseal and medial comminution.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 10 - 10
1 Mar 2017
Micheli B Wannomae K Muratoglu O
Full Access

Introduction. The fatigue strength of ultrahigh molecular weight polyethylene (UHMWPE) in total joint implants is crucial to its long term success in high demand applications, such as in the knee, and is typically determined by measuring the crack propagation resistance in razor-notched specimens under cyclic load [1]. This only tells part of the story: that is, how well the material resists crack propagation once a crack is present. A second, equally important component of fatigue strength is how well the material resists crack formation. Previous studies cyclically loaded a cantilevered post until failure [2], postulating that the post would break very quickly after crack initiation. Parran et. al. proposed a novel method to measure the crack initiation time by holding a sample in constant tension until a crack was visually observed [3]. We hypothesize that the crack initiation times of various UHMWPEs will follow similar trends as the more omnipresent crack propagation resistance tests. Materials and Methods. The following UHMWPE formulations were tested: (i) virgin, (ii) gamma sterilized in vacuum, (iii) 91 kGy gamma irradiated, and (iv) 91 kGy gamma irradiated and subsequently melted. GUR1020 and GUR1050 bar stock of varying irradiation doses were machined into compact tension specimens [4] with a notch depth of 17 mm and a blunt notch root radius of 0.25 mm, mimicking a geometry of a joint replacement component. Specimens were held in constant tension until failure; 3 to 5 different loads between 1 kN and 2.25 kN (n=3 samples per load per material) were tested. A video camera was focused on the face of the notch and took a picture every 10 seconds. The photos were reviewed to manually determine the crack initiation time (Fig 1). The time it took for the sample to completely fail – that is, shear into two separate pieces – was also recorded. Results. For all materials tested, the crack initiation time (Fig 2a,b) and the time to failure (Fig 2c,d) decreased as the applied load increased. The crack initiation time increased for the gamma sterilized materials when compared to the virgin materials while the time to failure decreased. The highly crosslinked, 91 kGy materials had crack initiation times and times to failure that were less than that of the virgin material. Post irradiation melting greatly diminished the fatigue strength of the material, yielding the lowest crack initiation time and time to failure. Discussion. The test yielded results consistent with current knowledge: that is, high-dose irradiation yields a slight drop in fatigue strength, and post-irradiation melting greatly reduces strength. This test was simple to set up and run and can be a good tool to determine the relative fatigue strengths of UHMWPE formulations for orthopaedic applications. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 232 - 232
1 Jul 2008
Young A
Full Access

Thirty patients underwent tibio-talo-calcaneal fusion using an interlocking arthrodesis intramedullary nail device with locking screws. Although the nail is described as being stiffer in flexion, rotation and cantilever bending it was noted that the placement of the locking screw holes were not sufficiently in-tune with the variations found in nature. The placement of the holes and locking screws with relation to the heights of the talus and calcaneum were measured on post operative xrays and conclusions drawn from the variations found. It was felt that the intramedullary nail is a good device when used for tibio-talo-calcaneal fusion but that the design could be improved in order to improve patient outcome


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_6 | Pages 24 - 24
1 Apr 2014
Tsang K Muthian S Trivedi J Jasani V Ahmed E
Full Access

Introduction:. Scheuermann's kyphosis is a fixed round back deformity characterised by wedged vertebrae seen on radiograph. It is known patients presented with a negative sagittal balance before operation. Few studies investigated the outcome after operation, especially the change in the lumbar hyperlordosis. Aim:. To investigate the change in sagittal profile after correction surgery. Method:. This is a retrospective review of cases from 2001 to 2012. Our centre uses a posterior, four rod cantilever reduction technique for all Scheuermann's Kyphosis correction. 36 cases are identified. They include 24 males and 12 females with an average age of 20 and follow up of 27 months. First 8 cases used the stainless steel hybrid implants. The remaining 28 had titanium all pedicle screw system. All had intra-operative spinal cord monitoring. Results:. The target of thoracic kyphosis correction is around the accepted upper end of normal limit (40°). The average thoracic kyphosis Cobb angle was 78.5°. The immediate post-op angle was 43.2° and at final follow up, 43.6°. The average lumbar lordosis changed from 65.7° pre-op to 48.8° post-op, which is now bigger than the thoracic kyphosis. The result is the transfer of average sagittal balance (C7 plumb line) from −2.2 cm to −3.5 cm, which remains posterior to the posterior corner of S1 after the surgery. Discussion:. Surgery can improve the roundback deformity but not the overall sagittal profile. We have no explanation to this phenomenon. This could imply the pathology of Scheuermann's Kyphosis involves the whole spine, not just the wedging thoracic segment. Conflict Of Interest Statement: No conflict of interest


Bone & Joint Open
Vol. 3, Issue 5 | Pages 359 - 366
1 May 2022
Sadekar V Watts AT Moulder E Souroullas P Hadland Y Barron E Muir R Sharma HK

Aims

The timing of when to remove a circular frame is crucial; early removal results in refracture or deformity, while late removal increases the patient morbidity and delay in return to work. This study was designed to assess the effectiveness of a staged reloading protocol. We report the incidence of mechanical failure following both single-stage and two stage reloading protocols and analyze the associated risk factors.

Methods

We identified consecutive patients from our departmental database. Both trauma and elective cases were included, of all ages, frame types, and pathologies who underwent circular frame treatment. Our protocol is either a single-stage or two-stage process implemented by defunctioning the frame, in order to progressively increase the weightbearing load through the bone, and promote full loading prior to frame removal. Before progression, through the process we monitor patients for any increase in pain and assess radiographs for deformity or refracture.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_15 | Pages 12 - 12
1 Oct 2014
Jasani V Tsang K Nikolau NR Ahmed E
Full Access

The current trend in kyphosis correction is for “every level” instrumentation to achieve intraoperative stability, correction, fusion and implant longevity. We evaluate the medium term follow up of a low implant density (LID) construct. All patients with adolescent kyphosis (idiopathic or Scheurmann's) on our deformity database were identified. Radiographs and records were analysed for neurological complications, correction and revision. The constructs included were all pedicle screw anchors with multiple apical chevron osteotomies and a proximal and distal “box” of 6 to 8 screws. A four rod cantilever reduction manoeuvre with side to side connectors completed the construct. Kyphosis for any other cause was excluded. Follow up less than 12 months was excluded. 23 patients were identified with an average follow up 27 months (72 to 12 months) and a mean implant density of 1.1 (53.5% of “available” pedicles instrumented). There was 1 false positive neurophysiological event without sequelae (4%). There were no proximal junctional failures (0%). There were no pseudarthroses or rod breakages (0%). There was 1 loss of distal rod capture (early set screw failure) (4%). This was revised uneventfully. There were 4 infections requiring debridement (early series). Average initial correction was 44% (77.7 degrees to 43.5 degrees) with a 1% loss of correction at final follow up (43.5 to 44.0 degrees). The fulcrum bending correction index was 107% (based on fulcrum extension radiographs). 85% of curves had a fulcrum flexibility of less than 50%. The average cost saving compared to “every level “instrumentation was £5700 per case. This paper shows that a LID construct for kyphosis has technical outcomes as good as high density constructs. The obvious limitation of the study is the small number of patients in the cohort. The infection rates have improved with changes to perioperative process in the later series of patients. We do not believe these are a consequence of the construct itself


Bone & Joint Open
Vol. 5, Issue 4 | Pages 286 - 293
9 Apr 2024
Upadhyay PK Kumar V Mirza SB Shah N

Aims

This study reports the results of 38 total hip arthroplasties (THAs) in 33 patients aged less than 50 years, using the JRI Furlong hydroxyapatite ceramic (HAC)-coated femoral component.

Methods

We describe the survival, radiological, and functional outcomes of 33 patients (38 THAs) at a mean follow-up of 27 years (25 to 32) between 1988 and 2018.