A spine compression fracture is a very common form of fracture in elderly with osteoporosis. Injection of polymethyl methacrylate (PMMA) to fracture sites is a minimally invasive surgical treatment, but PMMA has considerable clinical risks. We develop a novel type thermoplastic injectable
Objectives. The aim of this study was to analyze drain fluid, blood, and urine simultaneously to follow the long-term release of vancomycin from a biphasic ceramic carrier in major hip surgery. Our hypothesis was that there would be high local vancomycin concentrations during the first week with safe low systemic trough levels and a complete antibiotic release during the first month. Methods. Nine patients (six female, three male; mean age 75.3 years (sd 12.3; 44 to 84)) with trochanteric hip fractures had internal fixations. An injectable ceramic
Summary. A promising approach to stimulate in vivo bone formation by using our newly developed magnesium-based
Aim. To retrospectively investigate the clinical outcome after surgical, single-stage treatment of orthopaedic infections using antibiotics delivered locally by a calcium sulphate/hydroxyapatite biocomposite. Method. In order to identify the patients, we retrospectively searched several patient associated hospital-based databases using free text search with the term “Cerament” between November 2015 and November 2018. 58 cases with confirmed osteomyelitis and in which the
To demonstrate the role of an antibiotic containing
Aim. The use of
Bone loss continues to be a clinical and therapeutic problem. Bone reconstruction of osseous defects is a challenge after fracture and traumatic injuries, infections and tumors. The common objective is to regenerate bone morphology and function. Several techniques have been developed to promote bone formation, but the advent of new biomaterials allows us to take an entirely different approach to the treatment of bone voids. However, the use of
Aim. The demand for a synthetic
Introduction and Objective. Management of bone loss associated with bone contamination or infection represents a double biological and clinical challenge frequent in traumatology. The advent of new biomaterials can allow a different approach in the treatment of bone gap. The purpose of this study was to evaluate the prophylactic and therapeutic effectiveness of addition of a new absorbable
Aims: Hydroxyapatite (HA) is widely known in orthopaedic surgery and is proved to be safe and effective in
Aim of this work was to evaluate the efficacy of a new antibiotic
In order to improve hydroxyapatite (Ha) quality as a
Introduction: Seven patients underwent successful revision total knee replacement for aseptic loosening. Bovine bone graft was used to reconstruct bony defects in all. Materials and methods: This is a retrospective review. Between April 2000 and March 2003, bovine bone (Tutobone™, Wescott-Medical, UK) was used in 7 revision arthroplasty cases (4 right knees &
3 left). There were 5 males and 2 females. The average age was 70.4 years. All revisions were carried out for aseptic loosening of the prostheses associated with massive osteolysis and bone loss. The bone defects on the tibia and femur were as follows: (Obtained from operative records. Classified according to Anderson Orthopaedic Research Institute classification). Type I. Type IIA. Type IIB. Type III. TIBIA. 3. 1. 2. 1. FEMUR. 2. 3. 2. 0. The tibial defects were corrected by impaction grafting and femoral condyle defects were corrected by using bovine bone as bulk grafts. Semi-constrained constrained stemmed cemented modular knee prostheses (TC3, Depuy) were used in all. Clinical outcomes were recorded by the Oxford Knee Score. Serial radiographs were evaluated for graft density, integration, implant loosening, alignment and subsidence. Results: At recent follow-up, radiographs showed good graft integration, no loosening, and no subsidence of the implant and good prostheses alignment. The average Oxford Knee Score was 20.4. Conclusion &
discussion: Bovine
Aim. The aim of this work was to evaluate, via foot and ankle TC scans, the outcomes of the use of a
Open fractures carry a high risk of infection. Our objective was to evaluate the effect of a resorbable
Aim. The optimal treatment of displaced intra-articular calcaneal fractures (DIACF) remains controversial. The operative treatment group has better anatomical recovery, functional outcome scores and less pain than non operative treatment patients, but it may lead to a higher incidence of complications, such as delayed wound healing and surgical site infections. The aim of this study was to analyze the prophylactic effect using a biphasic
It is very important to fix implant to bone. Bioactive materials as hydroxyapatite or glass-ceramics have bone-bonding ability. Hydroxyapatite-coating is applied to cementless THA or TKA. I and coworkers investigated bone-bonding mechanism of bioactive material and found that bone-like apatite formation play key role for bonding. If the surface of metal is changed to form apatite on it in body, the inert metal changes into bone-bonding material. We developed alkaline and heat treatment of titanium to change titanium to bone –bonding material as follows. At first, titanium is dipped in 5N NaOH solution for 24 hours, at second the metal is washed in pure water and finally it is sintered in 500 degree C for 2 hours. The treated surface has bioactivity, bone bonding ability like hydroxyapatite. The advantage of this treatment over hydroxyapatite-coating procedure is to treat the porous surface without any change of pore figures. As to hydroxyapatite-coating procedure, pore of the small diameter is filled with hydroxyapatite and pore figures are change. We applied this alkaline and heat treatment to cementless THA and its good results of more than ten years was reported. Porous titanium can be changed to bioactive material by alkaline and heat treatment. This bioactive porous titanium was found to have a property of material-induced osteoinduction, that is, the bone formation in pore of porous titanium implanted in canine back muscle. They can be used for
Aims: Wood is a product of nature, has a structural architecture resembling bone and is chemically polymer-like. Birchwood modified with heat and humid air was selected to study its possibilities for bone reconstruction. Methods: Bulk birchwood was prepared for 2–3 hours at temperature of 220°C in humid air, this modifies the wood chemically and physically. 16 cone shaped implants 7x4 mm in size were carved from the heat treated material (Bioactive Wood Bone, BWB) and implanted by press-fit technique into holes drilled in the distal femurs of rabbits. Untreated cones served as controls. The resected knees were embedded in plastic (Techmont, Kulzer GmBH). For evaluation histology, histomorfometry and scanning electron microscopy (SEM) were carried out. Results: In vitro SEM showed the canal structures of the wood. In vivo no articular hydrops or wound infections were seen. At 4 and 8 weeks an inflammatory cellular reaction of a mild degree with some histiocytes was observed. At 8 and 20 weeks the implant’s surface was in connection with the surrounding bone and connective tissue. Bone-implant contact at the interface required proper press-fit technique. At 8 and 20 weeks histometry revealed new bone growth covering 21% (mean, range 6–41%) of the implant surface resembling the osteoconductive bonding characteristic of biomaterials. Conclusions: Modified heat treated wood showed biocompatibility and osteoconductivity in cancellous bone defect. A bone bonding-like-phenomenon observed at the interface between the birch implant and bone illustrates it’s potentials for use as a
Introduction: The incidence of contralateral, second hip fractures after a first hip fracture is as high as 20% in the elderly. Femoroplasty using an injectable and resorbable bi-phosphonate loaded