Advertisement for orthosearch.org.uk
Results 1 - 13 of 13
Results per page:
Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 255 - 255
1 May 2009
Schemitsch EH Zdero R
Full Access

Femur fractures are a complication of hip arthroplasty. When the stem is well fixed, fracture fixation is the preferred treatment option. Numerous fixation methods have been advocated, using plates and/or allograft struts. The study was conducted to determine the biomechanical characteristics of three constructs currently used for fixation of these fractures. Vancouver type B1 periprosthetic femur fractures were created distal to a cemented hip stem implanted in third generation composite femurs. The fractures were fixed with one of three constructs: 1- A non-locking plate and allograft strut (NLP-A) 2- A locking plate and allograft strut (LP-A) 3- A locking plate alone. (LP) The struts were held in place with cables. There were five specimens in each group. Following fixation, the constructs underwent sinusoidal cyclic loading from 200 to 1200 N for 100000 cycles. Stiffness of the constructs was determined in bending, torsion and axial compression before and after cyclic loading. Axial load to failure was also determined. Overall, cyclic loading had little effect on the mechanical properties of these constructs. The two constructs with allografts were significantly stiffer in coronal plane bending than the construct consisting of only a locking plate. There were no significant differences in axial or torsional stiffness between the constructs. Load to failure of the NLP-A (4095 N) and LP-A (4007 N) constructs was significantly greater than the LP construct (3398 N) (p=0.023 and p=0.044 respectively). All three constructs tested retained their mechanical characteristics following 100000 cycles of loading. Our initial concerns that the cables holding the allograft strut would loosen appear unfounded. Allograft strut-plate constructs are stiffer in bending and have a higher load to failure than a stand-alone locking plate. When an allograft plate construct is chosen, locking screws provide no mechanical advantage in this experimental model


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 97 - 97
1 May 2014
Haidukewych G
Full Access

Vancouver A: If minimal displacement and prosthesis stable can treat nonoperatively. If displacement is unacceptable and/or osteolysis is present consider surgery. AL: Rare, avulsions from osteopenia and lysis. If large, displaced and include large portion of calcar-can destabilise stem and prompt femoral revision. AG: More common. Often secondary to lysis. Does not usually affect implant stability. Minimal displacement. Treat closed × 3 months. Revise later is needed to remove the particle generator, debride defects and bone graft. Displaced with good host bone stock. Consider early ORIF and bone grafting. Vancouver B:. B1: Rarely non-operative. ORIF with femoral component retention. Need to carefully identify stem fixation. B2's classified as B1's are doomed to fail. B1's correctly identified treated with plate, allograft struts or both. High union rates with component retention. B2: Femoral revision +/− strut allograft. Best results seen with patients revised with uncemented, extensively porous coated femoral stems. May use modular, fluted taper stems. B3: Proximal femoral replacement - Tumor prosthesis, Allograft Prosthetic Composite (APC). Uncemented femoral stem - Extensively porous coated, Fluted, tapered stem, Allograft strut. Vancouver C: Treat with standard fracture techniques. These fractures are away from the femoral prosthesis. Rarely nonoperative. Fixation options – Cerclage, Strut Allograft, Plate fixation, Retrograde IM nail, or a Combination thereof. Avoid stress risers between implants. Bypass (overlap) fixation. Consider allowing 2.5 cortical diameters between devices


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_29 | Pages 48 - 48
1 Aug 2013
Riemer B Dunn R
Full Access

Aim:. Historically, anterior decompression followed by posterior fusion has been the surgical management of choice in spinal tuberculosis. Due to theatre time being at a premium, we have evolved to performing anterior only debridement, allograft strut reconstruction and instrumentation for tuberculosis in the adult thoracic spine. The aim of this study is to review the safety and the efficacy of this treatment. Methods:. Twenty-eight adult thoracic tuberculosis patients were identified where anterior only surgery had been performed. These were all in the mid-thoracic spine as circumferential surgery is still favoured in thoracolumbar disease. The surgery was performed by a single surgeon at a tertiary hospital. Following transthoracic aggressive debridement, allograft humeral shafts were cut to size and inserted under compression and the spines instrumented with the use of screw-rod constructs into the body above and below. A retrospective review of clinical notes and radiological studies was performed. Results:. Twenty-seven of the patients presented with altered neurology; 2 had only sensory changes while 25 presented with paraparesis; 22 of these patients were unable to walk. The average surgical time was 2 hours 20 minutes with a median blood loss of 726 ml. The majority of patients had 2 vertebral bodies involved and required an average of a 4 body fusion. Surgical complications included inadvertent opening of the diaphragm in 1 patient and 1 patient deteriorated neurologically post operatively. 21 of 28 patients recovered to independent mobility at their latest follow-up appointment. 1 patient showed no recovery, 3 had some motor recovery that was not useful, 1 had some sensory but no motor recovery. 16 of 28 patients have documented bony fusion with no evidence of instrumentation failure in any patients. Conclusion:. Anterior only debridement, allograft strut reconstruction and instrumented fusion for the treatment of thoracic spinal tuberculosis is a safe and effective alternative to circumferential surgery in the adult patient


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 82 - 82
1 Jul 2014
Haidukewych G
Full Access

Peri-prosthetic fractures of the femur around a THA remain challenging injuries to treat. The Vancouver Classification helps to guide decision making, and is based on fracture location, implant fixation status, and remaining bone quality. It is critical to determine fixation status of the implant, even if surgical dislocation is necessary. Type A fractures involve the trochanters, and are usually due to osteolysis. Revision of the bearing surface and bone grafting of the lesions can be effective. Type B1 fractures occur around a well fixed stem, typically at the stem tip. Internal fixation with laterally based locked cable plates is effective. Optimising proximal fixation is important, typically with locked screws and cables. Allograft struts are probably unnecessary with modern angle stable plates. Type B2 and B3 fractures are treated with revision, either with a fully coated cylindrical or a modular fluted tapered titanium stem. Distal fixation should be optimised, while preserving vascularity to proximal bony fragments. The « internal scaffold » technique has been described with excellent results. Rarely, a proximal femoral replacement is necessary. Careful attention to detail and clear knowledge of stem fixation status is necessary for a good outcome


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 66 - 66
1 Dec 2016
Gehrke T
Full Access

Periprosthetic fractures involving the femoral meta/diaphysis can be treated in various fashions. The overall incidence of those fractures after primary total knee arthroplasties (TKA) ranges from 0.3 to 2.5%, however, can increase above 30% in revision TKA, especially in older patients with poorer bone quality. Various classifications suggest treatment algorithms. However, they are not followed consequently. Revision arthroplasty becomes always necessary if the implant becomes loose. Next, it should be considered in case of an unhappy TKA prior to the fracture rather than going for an osteosynthesis. Coverage of the associated segmental bone loss in combination with proximal fixation, can be achieved in either cemented or non-cemented techniques, with or without the combination of osteosynthetic fracture stabilization. Severe destruction of the metaphyseal bone, often does not allow adequate implant fixation for the revision implant and often does not allow proper anatomic alignment. In addition the destruction might include loss of integrity of the collaterals. Consequently standard or even revision implants might not be appropriate. Although first reports about partial distal femoral replacement are available since the 1960´s, larger case series or technical reports are rare within the literature and limited to some specialised centers. Most series are reported by oncologic centers, with necessary larger osseous resections of the distal femur. The implantation of any mega prosthesis system requires meticulous planning, especially to calculate the appropriate leg length of the implant and resulting leg length. After implant and maybe cement removal, non-structural bone might be resected. Trial insertion is important due to the variation of overall muscle tension and recreation of the former joint line. So far very few companies offer yet such a complete, modular system which might also be expanded to a total femur solution. Furthermore it should allow the implantation of either a cemented or uncemented diaphyseal fixation. In general, the fracture should be well bridged with a longer stem in place. At least 3 cm to 5 cm of intact diaphysis away to the fracture site is required for stable fixation for both cemented and cementless stems. Application of allograft struts and cables maximises the biomechanical integrity of the fracture zone to promote fracture repair and implant fixation. Modular bridging systems do allow centimeter wise adaption distally, to the knee joint. Consequently in modern systems fully hinged or rotational hinge knee systems can be coupled, and adjusted accordingly to the patellar tracking and joint line. Fixation of the tibial component can be achieved in uncemented and cemented techniques. We still prefer the latter. Although a reliable and relatively quick technique, frequent complications for all mega systems have been described. These usually include infections, rotational alignment and loosening of the femoral fixation or subsequent proximal femoral fractures. Infections usually can be related to large soft tissue compromise or extensive exposure or longer procedure times. Thus implantation of such reconstruction systems should be reserved to specialised centers, with adequate facilities experience, in order to minimise complications rates and optimise patients function postoperative


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 14 - 14
1 Mar 2013
Benjamin-Laing H Konan S Rayan F Manktelow A Haddad FS
Full Access

Infected periprosthetic fractures around total hip arthroplasties are increasingly common and extremely challenging problem. The purpose of the study was to review the experience of two tertiary referral units managing infected periprosthetic femoral fractures using interlocking long-stem femoral prostheses either as temporary functional spacers or as definitive implants. Methods. A prospective review of 19 patients managed at two tertiary referral units between 2000 and 2011. Each patient was diagnosed and managed according to similar institutional protocols. Investigation through aspiration and biopsy of periprosthetic tissue supplemented haematological tests to confirm infection. The Cannulock uncoated stem was used in 14 cases, and the Kent hip prosthesis in 5 cases. Allograft struts were used in patients with deficient bone stock. Results. The mean follow-up for the series was a 53 months (range, 24–99 months). 13 patients underwent definitive revision within 7.9 months (range, 6–10 months; SD, 2.2 months). In 6 cases we implanted an extensively porous-coated stem, in 4 cases a tapered distally fixed cementless stem was used, and in 3 cases a proximal femoral replacement was used. There were no reinfections after the second stage revisions in these patients. 2 patients were offered further staged surgery due to persistently raised inflammatory markers but being mobile and relatively painfree declined. They are being managed in the community on oral antibiotics. Satisfactory outcome was noted in all cases, and in 13 cases, revision to a definitive stem was undertaken after successful control of infection and fracture union. The average postoperative Harris Hip score was 83 (range 79–89). All patients returned to their low to moderate premorbid functional state after discharge. Discussion. The use of interlocking stems offers a relatively appealing solution for a complex problem and avoids the complications associated with resection of the entire femur or the use of large quantities of bone cement


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 284 - 284
1 Sep 2005
Dunn R
Full Access

This paper reviews 46 consecutive spinal tuberculosis patients who underwent spinal surgery at a state facility over 2.5 years. The 21 male and 25 female patients ranged in age from 18 months to 67 years, with 19 patients under the age of 18 years. On presentation the mean ESR was 69 (15 to 140) and the white cell count normal. Axial pain and weakness were the most common complaints. There was often a delay of more than a month to presentation. Five patients were HIV positive. Histological and microbiological examination confirmed tuberculosis in 40 patients. There were seven cervical cases, eight lumbar and 31 thoracic. Six patients had additional non-contiguous spinal involvement. There was one radicular syndrome and 30 patients had neurological deficits. Anterior and posterior surgery was done on 22 patients. There were eight anterior only procedures, seven posterior only, six costotransversectomies and three biopsies. In addition two revision anteriors were done. Allograft struts were used in 16 and autograft in 13. Anterior instrumentation was employed in 11, posterior in six and none in 11. There were two deaths. Two grafts required early revision and one rotated but was accepted. Postoperative neurological recovery was noted from one day to 3 months, and typically by one month. All children regained normal neurological status. Spinal tuberculosis is a common cause of neurological deficit and surgery has to suit the specific case. There is still a valuable role for surgery without instrumentation, especially in the paediatric group. Despite extensive destruction, one can expect full neurological recovery


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 127 - 127
1 Mar 2008
Schemitsch E Walker R Zdero R Waddell J
Full Access

Purpose: The purpose of this study was to compare the biomechanical behavior of locking plates to conventional plate and allograft constructs for the treatment of periprosthetic femoral fractures. Methods: Twenty synthetic femora were tested in axial compression, lateral bending and torsion to characterize initial stiffness and stiffness following fixation of an osteotomy created at the tip of a cemented femoral component. Stiffness was tested with and without a 5mm gap. Axial load to failure was also tested. Four constructs were tested: Construct A – Synthes locked plate with unicortical locked screws proximally and bicortical locked screws distally; Construct B – Synthes locked plate with alternate unicortical locked screws and cables proximally and bicortical locked screws distally. Construct C – Zimmer cable plate with alternate unicortical non locked screws and cables proximally and bicortical non locked screws distally. Construct D – Zimmer cable plate in same fashion as construct C plus anterior strut allograft secured with cables proximally and distally. Results: In axial compression, construct D was significantly stiffer compared with all other constructs in the presence of a gap, with no differences between groups without a gap. For lateral bending stiffness, construct D was significantly stiffer than the other groups with and without a gap. In torsional testing, construct D was significantly stiffer than all other constructs in the presence of a gap. With no gap, construct D was significantly stronger than construct B. There were no significant differences between constructs A and B in all testing modalities. Axial load-to-failure ranged from 5561.5 to 6700.2 N. There were no significant differences in axial load to failure. Conclusions: This study suggests that a single locked plate does not provide the same initial fixation stiffness as a plate-allograft strut construct in the setting of a gapped osteotomy. This may be particularly important in the setting of a comminuted fracture or with bone loss. In these settings, a construct with a lateral plate and an allograft strut placed anteriorly at 90 degrees to the plate, may be optimal


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 236 - 237
1 May 2009
Schemitsch EH Cole PA St. Paul M Zdero R Talbot M Garneau D
Full Access

Gaining stable fixation in cases of recalcitrant non-unions can be challenging. These cases can be accompanied by a segmental bone defect and disuse osteopenia. One strategy to gain stable fixation is the use of allografts. Both cortical struts and intramedullary fibular allografts have been used for this purpose in the femur, tibia and humerus. The present study aims to compare the mechanical properties a locking plate, an intramedullary fibular strut allograft and a cortical strut allograft in a femur model of segmental bone defect. A transverse mid-shaft osteotomy was performed in fifteen third generation large composite femurs. Twelve millimeters of bone was resected to create a segmental bone defect. Fixation was undertaken as follows: Construct F (Fibula): Lateral Non Locking plate and Intramedullary Fibula Allograft Construct LP (Locking Plate): Lateral Locking Plate Constrcut S (Strut): Lateral Non-Locking Plate and Medial Cortical Strut Allograft Axial, Torsional and Bending Stiffness as well as Load-to-Failure were determined using an Instron 8874 materials testing machine. Overall, construct S was the stiffest, construct F intermediate and construct LP the least stiff. Specifically, the S construct was significantly (p< 0.05) stiffer than the two other constructs in the axial, coronal plane bending, sagital plane bending and torsional modes. Construct F was significantly stiffer than construct LP in the axial and coronal plane bending modes only. Both the S construct (6108 N) and the F construct (5344 N) had a greater Load-to-Failure than the LP construct (2855 N) (p=0.005 and 0.001 respectively). The construct with a lateral non-locking plate and a medial allograft strut was stiffer and had a higher load-to-failure than the construct consisting of a stand-alone locking plate. An intramedullary fibular allograft with a lateral non-locking plate had intermediate characteristics. Other factors, such as anatomic and biologic considerations need to be considered before choosing one of the above constructs. The allograft procedures should only be used once soft tissue coverage has been obtained and any infection eradicated


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 218 - 219
1 Nov 2002
Kyle R
Full Access

Periprosthetic fractures are becoming an increasing problem because of the number of total joint replacements that are performed yearly as well as the increase in longevity of the patients that receive total joint replacement. the risk factors for intraoperative fracture are rheumatoid arthritis, cementless arthroplasty, metabolic bone disease, Paget’s Disease, complex deformities, and revisions. The risk factors for post-operative fracture are weakened bone secondary to stress risers, screw holes, cortical perforations and stem tip protrusion, loose implants, and osteolysis. As a general rule the surgeon should make sure that all stress risers such as cortical windows and holes in the diaphysis should be bypassed at least two times the shaft diameter with a longer stem which restores the strength of the shaft to approximately 80%. Areas of transition between stem tips and plates or stem tips and stem tips should be avoided. Cortical strut grafts over holes, windows, and in areas of transition are of value. Johannsen’s Classification with a Type I fracture being proxmial to the tip of the stem, Type II fracture being around the tip of the stem, and Type III fracture distal to the tip of the stem is of value. In a cementless implant the majority of fractures are type I with the minority being Type II and Type III. In periprosthetic fractures with a well fixed prosthesis, the surgeon should maintain the components, restore alignment, and restore function. In periprosthetic fractures with a loose prosthesis, the surgeon should revise the components,restore alignment,and restore function. Treatment options for an intact prosthesis include cerclage wiring in high fractures and the use of plating and allograft struts in lower fractures. With loose implants, treatment options include removal of the implant while maintaining as much bone stock as possible. A loose implant must then be replaced and longer stems and cortical strut grafts are options in the reconstruction. Weight bearing is delayed to allow fracture healing. With this knowledge in hand, the orthopaedic surgeon can anticipate problems and reconstruct bony lesions causing periprosthetic fracture with some confidence in his mechanical constructs


Bone & Joint Open
Vol. 4, Issue 1 | Pages 38 - 46
17 Jan 2023
Takami H Takegami Y Tokutake K Kurokawa H Iwata M Terasawa S Oguchi T Imagama S

Aims

The objectives of this study were to investigate the patient characteristics and mortality of Vancouver type B periprosthetic femoral fractures (PFF) subgroups divided into two groups according to femoral component stability and to compare postoperative clinical outcomes according to treatment in Vancouver type B2 and B3 fractures.

Methods

A total of 126 Vancouver type B fractures were analyzed from 2010 to 2019 in 11 associated centres' database (named TRON). We divided the patients into two Vancouver type B subtypes according to implant stability. Patient demographics and functional scores were assessed in the Vancouver type B subtypes. We estimated the mortality according to various patient characteristics and clinical outcomes between the open reduction internal fixation (ORIF) and revision arthroplasty (revision) groups in patients with unstable subtype.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 23 - 23
1 Aug 2017
Lederman E
Full Access

Revision of the humeral component in shoulder arthroplasty is frequently necessary during revision surgery. Newer devices have been developed that allow for easy extraction or conversion at the time of revision preserving bone stock and simplifying the procedure. However, early generation anatomic and reverse humeral stems were frequently cemented into place. Monoblock or fixed collar stems make accessing the canal from above challenging. The cortex of the Humerus is far thinner than the femur and stress shielding has commonly led to osteopenia. Many stem designs have fins that project into the tuberosities putting them at risk for fracture on extraction. Extraction starts with an extended deltopectoral incision from the clavicle to the deltoid insertion. The proximal humerus needs to be freed from adhesions of the deltoid and conjoined tendon. The deltopectoral interval is fully developed. Complete subscapularis and anterior capsular release to the level of the latissimus tendon permits full exposure of the humeral head. After head removal the stem can be assessed for loosening and signs of periprosthetic joint infection. The proximal bone around the fin of the implant should be removed from the canal. If possible, the manufacturer's extractor should be utilised. If not, then a blunt impactor can be placed from below against the collar of the stem to assist in extraction. With luck the stem can be extracted from the cement mantle. If there is no concern for infection, the cement-in-cement technique can be used for revision. Otherwise, attempts should be made to extract all the cement and cement restrictor, if present. The small cement removal tools from the hip set can be used and specialised shoulder tools are available. An ultrasound cement removal device can be very helpful. The surgeon must be particularly careful to avoid perforation of the humeral cortex. This is especially important when near the radial nerve as injury can occur. When a well-fixed stem is encountered, an osteotomy of the proximal humerus is necessary. The surgeon can utilise a linear cut with an oscillating saw along the bicipital groove for the length of the implant. An osteotome is used to crack the cement mantle allowing stem extraction. Alternatively, a window can be created to offer additional access to the cement mantle. In the event the surgeon has required an osteotomy or window, cerclage wires, cables or suture will be needed and when the bone is potentially compromised, allograft bone graft struts (tibial shaft) are used for additional support. Care is needed when passing cerclage wires to avoid injury to the radial nerve which is adjacent to the deltoid insertion. If infection is suspected or confirmed an ALBC spacer is placed. When single stage revision is planned both cemented and uncemented stem options are available. Cement placed around the humeral stem has been suggested to decrease infection incidence. Revision of cemented humeral stems is a continued challenge in revision shoulder surgery. Newer systems and reverse total shoulder options have improved the surgeon's ability to achieve good outcomes when revising prior shoulder arthroplasty


Bone & Joint Research
Vol. 4, Issue 2 | Pages 23 - 28
1 Feb 2015
Auston DA Werner FW Simpson RB

Objectives

This study tests the biomechanical properties of adjacent locked plate constructs in a femur model using Sawbones. Previous studies have described biomechanical behaviour related to inter-device distances. We hypothesise that a smaller lateral inter-plate distance will result in a biomechanically stronger construct, and that addition of an anterior plate will increase the overall strength of the construct.

Methods

Sawbones were plated laterally with two large-fragment locking compression plates with inter-plate distances of 10 mm or 1 mm. Small-fragment locking compression plates of 7-hole, 9-hole, and 11-hole sizes were placed anteriorly to span the inter-plate distance. Four-point bend loading was applied, and the moment required to displace the constructs by 10 mm was recorded.