Femur fractures are a complication of hip arthroplasty. When the stem is well fixed, fracture fixation is the preferred treatment option. Numerous fixation methods have been advocated, using plates and/or
Vancouver A: If minimal displacement and prosthesis stable can treat nonoperatively. If displacement is unacceptable and/or osteolysis is present consider surgery. AL: Rare, avulsions from osteopenia and lysis. If large, displaced and include large portion of calcar-can destabilise stem and prompt femoral revision. AG: More common. Often secondary to lysis. Does not usually affect implant stability. Minimal displacement. Treat closed × 3 months. Revise later is needed to remove the particle generator, debride defects and bone graft. Displaced with good host bone stock. Consider early ORIF and bone grafting. Vancouver B:. B1: Rarely non-operative. ORIF with femoral component retention. Need to carefully identify stem fixation. B2's classified as B1's are doomed to fail. B1's correctly identified treated with plate,
Aim:. Historically, anterior decompression followed by posterior fusion has been the surgical management of choice in spinal tuberculosis. Due to theatre time being at a premium, we have evolved to performing anterior only debridement,
Peri-prosthetic fractures of the femur around a THA remain challenging injuries to treat. The Vancouver Classification helps to guide decision making, and is based on fracture location, implant fixation status, and remaining bone quality. It is critical to determine fixation status of the implant, even if surgical dislocation is necessary. Type A fractures involve the trochanters, and are usually due to osteolysis. Revision of the bearing surface and bone grafting of the lesions can be effective. Type B1 fractures occur around a well fixed stem, typically at the stem tip. Internal fixation with laterally based locked cable plates is effective. Optimising proximal fixation is important, typically with locked screws and cables.
Periprosthetic fractures involving the femoral meta/diaphysis can be treated in various fashions. The overall incidence of those fractures after primary total knee arthroplasties (TKA) ranges from 0.3 to 2.5%, however, can increase above 30% in revision TKA, especially in older patients with poorer bone quality. Various classifications suggest treatment algorithms. However, they are not followed consequently. Revision arthroplasty becomes always necessary if the implant becomes loose. Next, it should be considered in case of an unhappy TKA prior to the fracture rather than going for an osteosynthesis. Coverage of the associated segmental bone loss in combination with proximal fixation, can be achieved in either cemented or non-cemented techniques, with or without the combination of osteosynthetic fracture stabilization. Severe destruction of the metaphyseal bone, often does not allow adequate implant fixation for the revision implant and often does not allow proper anatomic alignment. In addition the destruction might include loss of integrity of the collaterals. Consequently standard or even revision implants might not be appropriate. Although first reports about partial distal femoral replacement are available since the 1960´s, larger case series or technical reports are rare within the literature and limited to some specialised centers. Most series are reported by oncologic centers, with necessary larger osseous resections of the distal femur. The implantation of any mega prosthesis system requires meticulous planning, especially to calculate the appropriate leg length of the implant and resulting leg length. After implant and maybe cement removal, non-structural bone might be resected. Trial insertion is important due to the variation of overall muscle tension and recreation of the former joint line. So far very few companies offer yet such a complete, modular system which might also be expanded to a total femur solution. Furthermore it should allow the implantation of either a cemented or uncemented diaphyseal fixation. In general, the fracture should be well bridged with a longer stem in place. At least 3 cm to 5 cm of intact diaphysis away to the fracture site is required for stable fixation for both cemented and cementless stems. Application of
Infected periprosthetic fractures around total hip arthroplasties are increasingly common and extremely challenging problem. The purpose of the study was to review the experience of two tertiary referral units managing infected periprosthetic femoral fractures using interlocking long-stem femoral prostheses either as temporary functional spacers or as definitive implants. Methods. A prospective review of 19 patients managed at two tertiary referral units between 2000 and 2011. Each patient was diagnosed and managed according to similar institutional protocols. Investigation through aspiration and biopsy of periprosthetic tissue supplemented haematological tests to confirm infection. The Cannulock uncoated stem was used in 14 cases, and the Kent hip prosthesis in 5 cases.
This paper reviews 46 consecutive spinal tuberculosis patients who underwent spinal surgery at a state facility over 2.5 years. The 21 male and 25 female patients ranged in age from 18 months to 67 years, with 19 patients under the age of 18 years. On presentation the mean ESR was 69 (15 to 140) and the white cell count normal. Axial pain and weakness were the most common complaints. There was often a delay of more than a month to presentation. Five patients were HIV positive. Histological and microbiological examination confirmed tuberculosis in 40 patients. There were seven cervical cases, eight lumbar and 31 thoracic. Six patients had additional non-contiguous spinal involvement. There was one radicular syndrome and 30 patients had neurological deficits. Anterior and posterior surgery was done on 22 patients. There were eight anterior only procedures, seven posterior only, six costotransversectomies and three biopsies. In addition two revision anteriors were done.
Purpose: The purpose of this study was to compare the biomechanical behavior of locking plates to conventional plate and allograft constructs for the treatment of periprosthetic femoral fractures. Methods: Twenty synthetic femora were tested in axial compression, lateral bending and torsion to characterize initial stiffness and stiffness following fixation of an osteotomy created at the tip of a cemented femoral component. Stiffness was tested with and without a 5mm gap. Axial load to failure was also tested. Four constructs were tested: Construct A – Synthes locked plate with unicortical locked screws proximally and bicortical locked screws distally; Construct B – Synthes locked plate with alternate unicortical locked screws and cables proximally and bicortical locked screws distally. Construct C – Zimmer cable plate with alternate unicortical non locked screws and cables proximally and bicortical non locked screws distally. Construct D – Zimmer cable plate in same fashion as construct C plus anterior
Gaining stable fixation in cases of recalcitrant non-unions can be challenging. These cases can be accompanied by a segmental bone defect and disuse osteopenia. One strategy to gain stable fixation is the use of allografts. Both cortical struts and intramedullary fibular allografts have been used for this purpose in the femur, tibia and humerus. The present study aims to compare the mechanical properties a locking plate, an intramedullary fibular
Periprosthetic fractures are becoming an increasing problem because of the number of total joint replacements that are performed yearly as well as the increase in longevity of the patients that receive total joint replacement. the risk factors for intraoperative fracture are rheumatoid arthritis, cementless arthroplasty, metabolic bone disease, Paget’s Disease, complex deformities, and revisions. The risk factors for post-operative fracture are weakened bone secondary to stress risers, screw holes, cortical perforations and stem tip protrusion, loose implants, and osteolysis. As a general rule the surgeon should make sure that all stress risers such as cortical windows and holes in the diaphysis should be bypassed at least two times the shaft diameter with a longer stem which restores the strength of the shaft to approximately 80%. Areas of transition between stem tips and plates or stem tips and stem tips should be avoided. Cortical strut grafts over holes, windows, and in areas of transition are of value. Johannsen’s Classification with a Type I fracture being proxmial to the tip of the stem, Type II fracture being around the tip of the stem, and Type III fracture distal to the tip of the stem is of value. In a cementless implant the majority of fractures are type I with the minority being Type II and Type III. In periprosthetic fractures with a well fixed prosthesis, the surgeon should maintain the components, restore alignment, and restore function. In periprosthetic fractures with a loose prosthesis, the surgeon should revise the components,restore alignment,and restore function. Treatment options for an intact prosthesis include cerclage wiring in high fractures and the use of plating and
The objectives of this study were to investigate the patient characteristics and mortality of Vancouver type B periprosthetic femoral fractures (PFF) subgroups divided into two groups according to femoral component stability and to compare postoperative clinical outcomes according to treatment in Vancouver type B2 and B3 fractures. A total of 126 Vancouver type B fractures were analyzed from 2010 to 2019 in 11 associated centres' database (named TRON). We divided the patients into two Vancouver type B subtypes according to implant stability. Patient demographics and functional scores were assessed in the Vancouver type B subtypes. We estimated the mortality according to various patient characteristics and clinical outcomes between the open reduction internal fixation (ORIF) and revision arthroplasty (revision) groups in patients with unstable subtype.Aims
Methods
Revision of the humeral component in shoulder arthroplasty is frequently necessary during revision surgery. Newer devices have been developed that allow for easy extraction or conversion at the time of revision preserving bone stock and simplifying the procedure. However, early generation anatomic and reverse humeral stems were frequently cemented into place. Monoblock or fixed collar stems make accessing the canal from above challenging. The cortex of the Humerus is far thinner than the femur and stress shielding has commonly led to osteopenia. Many stem designs have fins that project into the tuberosities putting them at risk for fracture on extraction. Extraction starts with an extended deltopectoral incision from the clavicle to the deltoid insertion. The proximal humerus needs to be freed from adhesions of the deltoid and conjoined tendon. The deltopectoral interval is fully developed. Complete subscapularis and anterior capsular release to the level of the latissimus tendon permits full exposure of the humeral head. After head removal the stem can be assessed for loosening and signs of periprosthetic joint infection. The proximal bone around the fin of the implant should be removed from the canal. If possible, the manufacturer's extractor should be utilised. If not, then a blunt impactor can be placed from below against the collar of the stem to assist in extraction. With luck the stem can be extracted from the cement mantle. If there is no concern for infection, the cement-in-cement technique can be used for revision. Otherwise, attempts should be made to extract all the cement and cement restrictor, if present. The small cement removal tools from the hip set can be used and specialised shoulder tools are available. An ultrasound cement removal device can be very helpful. The surgeon must be particularly careful to avoid perforation of the humeral cortex. This is especially important when near the radial nerve as injury can occur. When a well-fixed stem is encountered, an osteotomy of the proximal humerus is necessary. The surgeon can utilise a linear cut with an oscillating saw along the bicipital groove for the length of the implant. An osteotome is used to crack the cement mantle allowing stem extraction. Alternatively, a window can be created to offer additional access to the cement mantle. In the event the surgeon has required an osteotomy or window, cerclage wires, cables or suture will be needed and when the bone is potentially compromised,
This study tests the biomechanical properties of adjacent locked
plate constructs in a femur model using Sawbones. Previous studies
have described biomechanical behaviour related to inter-device distances.
We hypothesise that a smaller lateral inter-plate distance will
result in a biomechanically stronger construct, and that addition
of an anterior plate will increase the overall strength of the construct. Sawbones were plated laterally with two large-fragment locking
compression plates with inter-plate distances of 10 mm or 1 mm.
Small-fragment locking compression plates of 7-hole, 9-hole, and
11-hole sizes were placed anteriorly to span the inter-plate distance.
Four-point bend loading was applied, and the moment required to
displace the constructs by 10 mm was recorded.Objectives
Methods