header advert
Results 1 - 6 of 6
Results per page:
Applied filters
Content I can access

General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 26 - 26
1 Jan 2016
Stevens A Hussenbocus S Wilson C Mercer G Krishnan J
Full Access

Introduction

Total hip replacement (THR) is a very common procedure performed for the treatment of osteoarthritis of the hip. The aim of THR is to restore function and quality of life of the patients, by restoring femoral offset, leg length, centre of rotation, and achieving stability, to avoid dislocation postoperatively.

Method

We aimed to perform preoperative assessment of femoral offset on anteroposterior (AP) radiographs of the hip, and on corresponding CT scans, for patients undergoing primary THR. Patients were positioned according to a standardised protocol prior to obtaining radiographs of the hip and CT scan. Inter- and intra-observer reliability was evaluated between 3 observers of differing levels of seniority – an orthopaedic trainee, a fellow, and a consultant. CT scan measurements of offset were performed by one consultant radiologist. The researchers measuring radiographic offset were blinded to the results of the CT measurements.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 27 - 27
1 Jan 2016
Stevens A Wilson C Mercer G Krishnan J
Full Access

Introduction

There are conflicting views when assessing the best imaging modality by which to assess long leg alignment pre and post operatively for patients’ receiving primary total hip replacements. It has been a long standing standard that long-leg radiographs are used for measuring and interpreting alignment of the lower limb, but recently it has been suggested that CT imaging may be a better option for this assessment.

Methods

Patients awaiting total knee replacement surgeries were invited to participate in this clinical trial. 120 participants’ consented and completed both pre and post-operative long-leg radiographs, and lower limb CT scans. Long leg radiographs were analysed and measured by senior orthopaedic surgeons pre and post-operatively, while CT scans were analysed using the perth protocol method by trained radiologists. Mechanical alignment of the lower limb was calculated using both imaging modalities, the CT “scout” scan was used for the measurement of the mechanical alignment.

Pre-operatively the patients had their imaging performed between 1 year and 1 week pre-operatively, and following surgery their imaging was standardised to 6 months post-operatively. For long leg radiographs, patients were asked to stand with their feet shoulder width apart and toes forward facing (on occasion deformities would not allow for this stance, and they were asked to adopt this stance to the best of their ability).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 130 - 130
1 Jan 2016
Wilson C Stevens A Mercer G Krishnan J
Full Access

Alignment and soft tissue balance are two of the most important factors that influence early and long term outcome of total knee arthroplasty.

Current clinical practice involves the use of plain radiographs for preoperative planning and conventional instrumentation for intra operative alignment.

The aim of this study is to assess the SignatureTM Personalised system using patient specific guides developed from MRI. The SignatureTM system is used with the VanguardRComplete Knee System. This system is compared with conventional instrumentation and computer assisted navigation with the Vanguard system.

Patients were randomised into 3 groups of 50 to either Conventional Instumented Knee, Computer Navigation Assisted Knee Arthroplasty or Signature Personalised Knee Arthoplasty. All patients had the Vanguard Total knee Arthroplasty Implanted.

All patients underwent Long leg X-rays and CT Scans to measure Alignment at pre-op and 6 months post-op. All patients had clinical review and the Knee Society Score (KSS) at 1 year post surgery was used to measure the outcome.

A complete dataset was obtained for 124 patients. There were significant differences in alignment on Long leg films ot of CT scan with perth protocol. Notably the Signature group had the smallest spread of outliers.

In conclusion the Signature knee system compares well in comparison with traditional instrumentation and CAS Total Knee Arthroplasty.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 25 - 25
1 Jan 2016
Stevens A Wilson C Shunmugam M Ranawat V Krishnan J
Full Access

Inter- and intra-observer variation has been noted in the analysis of radiographic examinations with regard to experience of surgeons, and the monitors used for conducting the evaluations. The aim of this study is to evaluate inter/intra observer variation in the measurement of mechanical alignment from long-leg radiographs.

40 patients from the elective waiting list for TKA underwent long leg radiographs pre-operatively and 6 months post-operatively (total of 80 radiographs). The x-rays were analysed by 5 observers ranging in experience from medical student to head orthopaedic surgeon. Two observers re-analysed their results 6 months later to determine intraobserver correlation, and one observer re-measured the alignment on a different monitor. These measurements were all conducted blindly and none of the observers had access to the others’ results.

80 radiographs were analysed in total, 40 pre-op and 40 post-op. The mechanical alignment was analysed using Pearson's correlation (r = 0 no agreement, r = 1 perfect agreement) and revealed that experience as an orthopaedic surgeon has little effect on the measurement of mechanical alignment from long leg radiograph. The results for the different monitor analysis were also analysed using Pearson's correlation of long leg alignment. Monitor quality does seem to affect the correlation between alignment measurements when reviewing both intra and inter observer correlation on different computer monitors.

Surgical experience has little impact on the measurement of alignment on long leg radiographs. Of greater concern is that monitors of different resolution can affect measurement of mechanical alignment. As there might be a range of monitors in use in different institutions, and also in outpatient clinics to surgical theatres, close attention should be paid to the implications of these results.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 37 - 37
1 Jan 2016
Stevens A Surabhi R Jaarsma R Bramwell D Krishnan J
Full Access

Introduction & aims

Different racial groups show variations in femoral morphometry. Femoral anteroposterior measurement and mediolateral measurement are key variables in designing femoral implant for TKR. Their aspect ratio determines the shape and mediolateral sizing for the proper patellofemoral tracking and uniform stress distribution over the resected distal femoral surface.

Method

We reviewed the current literature in December 2013 in common medical databases including the Cochrane Library, PubMed and Medline. Keywords included combinations of: Anthropometry, Knee, Arthroplasty, Femur, Morphometry, Geometry. We selected papers including femoral morphometric data collected from populations of different ethnic origins. Papers covered populations in the USA, China, Germany, Thailand, Korea, India, Japan and Malaysia.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_7 | Pages 19 - 19
1 May 2015
Pease F Ward A Stevens A Cunningham J Sabri O Acharya M Chesser T
Full Access

Stable, anatomical fixation of acetabular fractures gives the best chance of a good outcome. We performed a biomechanical study to compare fracture stability and construct stiffness of three methods of fixation of posterior wall acetabular fractures.

Two-dimensional motion analysis was used to measure fracture fragment displacement and the construct stiffness for each fixation method was calculated from the force / displacement data.

Following 2 cyclic loading protocols of 6000 cycles, to a maximum 1.5kN, the mean fracture displacement was 0.154mm for the rim plate model, 0.326mm for the buttress plate and 0.254mm for the spring plate model. Mean maximum displacement was significantly less for the rim plate fixation than the buttress plate (p=0.015) and spring plate fixation (p=0.02).

The rim plate was the stiffest construct 10962N/mm (SD 3351.8), followed by the spring plate model 5637N/mm (SD 832.6) and the buttress plate model 4882N/mm (SD 387.3).

Where possible a rim plate with inter-fragmentary lag screws should be used for isolated posterior wall fracture fixation as this is the most stable and stiffest construct. However, when this method is not possible, spring plate fixation is a safe and superior alternative to a posterior buttress plate method.