Abstract
Stable, anatomical fixation of acetabular fractures gives the best chance of a good outcome. We performed a biomechanical study to compare fracture stability and construct stiffness of three methods of fixation of posterior wall acetabular fractures.
Two-dimensional motion analysis was used to measure fracture fragment displacement and the construct stiffness for each fixation method was calculated from the force / displacement data.
Following 2 cyclic loading protocols of 6000 cycles, to a maximum 1.5kN, the mean fracture displacement was 0.154mm for the rim plate model, 0.326mm for the buttress plate and 0.254mm for the spring plate model. Mean maximum displacement was significantly less for the rim plate fixation than the buttress plate (p=0.015) and spring plate fixation (p=0.02).
The rim plate was the stiffest construct 10962N/mm (SD 3351.8), followed by the spring plate model 5637N/mm (SD 832.6) and the buttress plate model 4882N/mm (SD 387.3).
Where possible a rim plate with inter-fragmentary lag screws should be used for isolated posterior wall fracture fixation as this is the most stable and stiffest construct. However, when this method is not possible, spring plate fixation is a safe and superior alternative to a posterior buttress plate method.