header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 94 - 94
23 Feb 2023
Grupp T Schierjott R Pfaff A Tozzi G Schwiesau J Giurea A
Full Access

Total knee arthroplasty with a rotating hinge knee with carbon-fibre-reinforced (CFR)-PEEK as an alternative bushing material with enhanced creep, wear and fatigue behaviour has been clinically established [1–4]. The objective of our study was to compare results from in vitro biotribological characterisation to ex vivo findings on a retrievals.

A modified in vitro wear simulation based on ISO 14243-1 was performed for 5 million cycles on rotating hinge knee (RHK) designs (EnduRo®) out of cobalt-chromium and ZrN-multilayer ceramic coating. The rotational & flexion axles-bushings and the flanges are made of CFR-PEEK with 30% polyacrylonitrile fibre content.

Analysis of 12 retrieved EnduRo® RHK systems in cobalt-chromium and ZrN-multilayer in regard to loosening torques, microscopic surface analysis, distinction between different wear modes and classification with a modified HOOD-score has been performed.

For the RHK design with the polyethylene gliding surface and bushings and flanges made out of CFR-PEEK, a cumulative volumetric wear was measured to be 12.9±3.95 mm3 in articulation to cobalt-chromium and 1.3±0.21 mm3 to ZrN-multilayer coating - a significant 9.9-fold decrease (p=0.0072).

For the CFR-PEEK flexion bushing and flanges the volumetric wear rates were 2.3±0.48 mm3/million cycles (cobalt-chromium) and 0.21±0.02 mm3/million cycles (ZrN-multilayer) (p=0.0016). The 5 million cycles of in vitro wear testing reflect a mean in vivo service life of 2.9 years, which is in accordance to the time in vivo of 12-60 months of the retrieved RHK components [5]. The main wear modes were comparable between retrievals and in vitro specimens, whereby the size of affected area on the retrieved components showed a higher variation.

For the EnduRo® RHK design the findings on retrieved implants demonstrate the high suitability of CFR-PEEK as a biomaterial for highly loaded bearings, such as RHK bushings and flanges in articulation to cobalt-chromium and to a ZrN-multilayer coating.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 10 - 10
1 May 2016
Grupp T Fritz B Kutzner I Bergmann G Schwiesau J
Full Access

INTRODUCTION

Highly cross-linked polyethylene (XLPE) inserts have shown significant improvements in decreasing wear and osteolysis in total hip arthroplasty [1]. In contrast to that, XLPE has not shown to reduce wear or aseptic loosening in total knee arthroplasty [2,3,4].

One major limitation is that current wear testing in vitro is mainly focused on abrasive-adhesive wear due to level walking test conditions and does not reflect “delamination” as an essential clinical failure mode [5,6].

The objective of our study was to use a highly demanding daily activities wear simulation to evaluate the delamination risk of polyethylene materials with and without vitamin E stabilisation.

MATERIALS & METHODS

A cruciate retaining fixed bearing TKA design (Columbus® CR) with artificially aged polyethylene knee bearings (irradiation 30 & 50 kGy) blended with and without 0.1% vitamin E was used under medio-lateral load distribution and soft tissue restrain simulation. Daily patient activities measured by Bergmann et al. [7] in vivo, were applied for 5 million knee wear cycles in a combination of 40% stairs up, 40 % stairs down, 10% level walking, 8% chair raising and 2% deep squatting with up to 100° flexion [8] (Fig. 1).

The specimens were evaluated for gravimetric wear and analysed for abrasive-adhesive and delamination wear modes.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 123 - 123
1 May 2016
Paulus A Brosseder S Schroeder C Jansson V Grupp T Schwiesau J Utzschneider S
Full Access

Introduction

The complex cellular mechanisms of the aseptic loosening of total joint arthroplasties still remain not completely understood in detail. Especially the role of adherent endotoxins in this process remains unclear, as lipopolysaccharides (LPS) are known to be very potent modulators of the cell response on wear particle debris. Contributing factors on the LPS affinity of used orthopedic biomaterials as their surface roughness have to be investigated. The aim of this study was to evaluate the affinity of LPS on the surface roughness of different biomaterials in vitro. The hypothesis of the study was that rough surfaces bind more LPS than smooth surfaces.

Materials and methods

Cubes with a side length from ultra-high-molecular-weight-polyethylene (UHMWPE), crosslinked polytethylene (XPE), carbon fibre reinforced poly-ether-ether-ketone (CFR-PEEK), titanium, titanium alloy, Polymethyl methacrylate (PMMA), implant steel (CoCr) and instrument steel (BC) were produced (figure 1). Cubes of each material have been produced with a rough and a smooth surface. Before the testings, all cubes and used materials were treated with E-Toxa-Clean(®) to eliminate pre-existing LPS on the used surfaces. The cubes were then fixed on the cap of a glass that was filled with a LPS solution with a concentration of 5 IE/ml. After 30 minutes the cube was removed and the LPS concentration in the supernatant was measured. The endotoxin content of each sample was evaluated by a Limulus Amoebocyte Lysate (LAL) - Test (Lonza, Verviers, Belgium). The detection level of endotoxin was set at < 0.005 EU/ml diluted 1/10.