header advert
Results 1 - 4 of 4
Results per page:
Applied filters
Content I can access

Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 32 - 32
17 Nov 2023
Warren J Canden A Farndon M Brockett C
Full Access

Abstract

Objectives

The aim of this work was to compare the different techniques and the different fluid permeability of the tissue following each technique through assessing the flow of radiopaque contrast agent using μCT image analysis and 3D modelling.

Methods

Donated human tali specimens (n=12) were prepared through creating a 10mm diameter chondral defect in three different regions of each talus. Each region then underwent one of three surgical techniques: 1) Fine wire drilling, 2) Nanofracture or 3) Microfracture, equidistant sites in each defect to ensure even distribution. Each region then had an addition of 0.1 ml radiopaque contrast agent (Omnipaque™ 300), imaged using a clinical μCT scanner (SCANCO Medical AG, 73.6 μm resolution). Each μCT scan was segmented using Slicer 3D software (The Slicer Community, 2023 3D Slicer (5.2.2)). The segmentation package was used to segment the bone and contrast agent regions in each different surgical site of each sample. Each defect site was created into a cylinder and the ratio of segmented pixels of contrast agent against bone.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 36 - 36
17 Nov 2023
Warren J Mengoni M
Full Access

Abstract

Objectives

While spinal fusion is known to be associated with adjacent disc degeneration, little is known on the role of the facet joints in the process, and whether their altered biomechanics following fusion plays a role in further spinal degeneration. This work aimed to develop a model and method to sequentially measure the effects of spinal fusion on lumbar facet joints through synchronisation of both motion analysis, pressure mapping and mechanical analysis.

Methods

Parallel measurements of mature ovine lumbar facet joints (∼8yr old, n=3) were carried out using synchronised load and displacement measurements, motion capture during loading and pressure mapping of the joint spaces during loading. Functional units were prepared and cemented in PMMA endcaps. Displacement-controlled compression measurements were carried out using a materials testing machine (3365, Instron, USA) at 1 mm/min up to 950 N with the samples in a neutral position, while motion capture of the facet joints during compression was carried out using orthogonal HD webcams (Logitech, Switzerland) to measure the displacement of key facet joint features. The pressure mapping of load transfer during displacement was carried out using a flexible pressure sensor (6900 series, Tekscan, USA). Each sample was imaged at an isotropic resolution of 82 microns using a μCT scanner (XtremeCT, Scanco, Switzerland) to quantify the curvature within the facet joints.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 31 - 31
17 Nov 2023
Warren J Cowie R Jennings L Wilcox R Fermor H
Full Access

Abstract

Objectives

The aim of this study was to develop an in vitro GAG-depleted patella model and assess the biomechanical effects following treatment with a SAP:CS self-assembling hydrogel.

Methods

Porcine patellae (4–6 month old) were harvested and subject to 0.1% (w/v) sodium dodecyl sulfate (SDS) washes to remove GAGs from the cartilage. Patellae were GAG depleted and then treated by injection with SAP (∼ 6 mM) and CS (10 mg) in Ringer's solution through a 30G needle. Native, GAG depleted and SAP:CS treated patellae were tested through static indentation testing, using 15g load, 5mm indenter over 1hr period. The degree of deformation of each group was assessed and compared (Mann-Whitney, p<0.05). Native, GAG depleted, sham (saline only) and SAP:CS treated paired patellae and femurs were additionally characterized tribologically through sequential wear testing when undergoing a walking gait profile (n=6 per group). The cartilage surfaces were assessed and compared (Mann-Whitney, p<0.05) using the ICRS scoring system, surface damage was illustrated through the application of Indian ink.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 4 - 4
1 Jan 2019
Coe R Warren J Sikora S Miles DE Mengoni M Wilcox RK
Full Access

Intervertebral disc (IVD) degeneration is one of the major causes of back pain. A number of emerging treatments for the condition have failed during clinical trial due to the lack of robust biomechanical testing during product development. The aim of this work was to develop improved in-vitro testing methods to enable new therapeutic approaches to be examined pre-clinically. It forms part of a wider programme of research to develop a minimally invasive nucleus augmentation procedure using self-assembling hydrogels.

Previous static testing on extracted IVDs have shown large inter-specimen variation in the measured stiffness when specimen hydration and fluid flow were not well controlled. In this work, a method of normalising the hydration state of IVDs prior-to and during compressive testing was developed.

Excised adult bovine IVDs underwent water-pik treatment and a 24-hour agitated bath in monosodium citrate solution to maximise fluid mobility. Specimens were submerged in a saline bath and held under constant pressure for 24 hours, after which the rate of change of displacement was low. Specimens were then cyclically loaded, from which the normalised specimen stiffness was determined. A degenerate disc model was developed with the use of enzymatic degeneration, allowing specimens to be tested sequentially in a healthy, degenerate, and then treated state. Self-assembling peptide-GAG hydrogels were tested using the developed method and the effect of treatment on stiffness and disc height were assessed.

Compared to previous static tests, the improved method reduced the variation in the normalised specimen stiffness. In addition, statistically significant differences were seen before and after enzymatic degradation to simulate degeneration, thus providing controls against which to evaluate treatments. The augmentation of the nucleus with the hydrogel intervention reduces the stiffness of the degenerate disc towards that of the healthy disc. This method is now being used to further investigate nucleus augmentation devices.