header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 247 - 247
1 Mar 2013
Sakai R Takahira N Uchiyama K Yamamoto T Fukushima K Tanaka K Uchijima D Itoman M Mabuchi K
Full Access

Fracture during total hip arthroplasty occurs partly because the acquisition of fixation at the time of stem implantation depends on the operator's experience and sensation due to the absence of definite criteria. Therefore, an objective evaluation method to determine whether the stem has been appropriately implanted is necessary. We clarified the relationship between the hammering sound frequency during stem implantation and internal stress in a femoral model, and evaluated the possible usefulness of hammering sound frequency analysis for preventing intraoperative fracture.

Three types of cementless stem were used. Orthopedists performed stem insertion using a procedure similar to that employed in routine operation. Stress was estimated by finite element analysis using the hammering force calculated from the loading sensor as a loading condition, and frequency analysis of hammering sound data obtained using a microphone was performed (Fig. 1).

Finite element analysis showed a decrease in the hammering sound frequency with an increase in the estimated maximum stress (Fig. 2, 3). When a decrease in frequency was observed, adequate hammering had already been performed to achieve press-fit stability. Therefore, there is a possibility that the continuation of hammering induces intraoperative fractures that become a problem. Based on the relationship between stress and frequency, the evaluation of changes in frequency may be useful for preventing the development of intraoperative fractures.

When a decrease in frequency is observed, the hammering force should be reduced thereafter. Hammering sound frequency analysis may allow the prediction of bone fractures that can be visually confirmed, and may be a useful objective evaluation method for the prevention of intraoperative bone fracture.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 195 - 195
1 Sep 2012
Uchijima D Hiraki Y Katori T Tanaka K Sakai R Mabuchi K
Full Access

Fluid film lubricating ability of a total hip prosthesis depends on the profile accuracies including surface-roughness or the sphericity of a head or a cup. Therefore, surface polishing is important. It was, however, difficult to polish the central portion of a cup or head using the conventional rotating machine. In the present study, we developed a polishing method combining a pendulum machine and a robotic arm. The effect of the accuracy improvement by this method was evaluated by the friction measurements on some test specimens.

Nine balls and a cup of Co-Cr-Mo alloy that were polished by a conventional process using a rotating machine were prepared for the prototype. The average diameter of the balls was 31.9648 mm with the sphericity of 0.0028 μm. The inside diameter of the cup was 31.9850 mm with the sphericity of 0.0044 μm. We combined a robotic arm and a pendulum apparatus to enable the further polishing. The ability of both automatic centering and change in the sliding direction was accomplished by this system. The sliding direction has been changed 180 times every ten degrees. The total distance of polishing was 120 m under vertical load of 100 N in a bath of saline solution containing abrasive grains of silicate of the diameter of 2μm. The surface roughness of the central portion of the cup, which is important area for the fluid film lubrication decreased from Ra 20.2 μm before the polishing to Ra 18.7 μm after the polishing.

A pendulum type friction tester was used for the assessment of the improvement of the lubricating ability by the polishing. The measurement was run over at 10 times under the conditions of the load of 600 N in a bath of saline solution. As the result, the frictional coefficients decreased from 0.1456–0.1720 before polishing to 0.1250–0.1300 after polishing. The polishing effect was, however, observed only at the specimens that radial clearances did not exceed the value of 50 μm.

The present results indicated that the surface polishing of the central portion of hip prostheses must improve the lubrication ability and the radial clearance before the finishing process should be chinked as possible.