header advert
Results 21 - 31 of 31
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 441 - 441
1 Dec 2013
Murase K Tsutsumi S Takai S Yoshino N
Full Access

The contact condition in the human knee joint must play important roles especially in dynamic loading situations where the loads transfer in the knee. In this study, the impact stress propagations through the inside of the knee joint were simulated using the three-dimensional finite element analysis (FEA). And the differences in the stress distribution were investigated between the intact knee and the total replacement condition.

The finite element (FE) models of an intact human knee joint and a total replaced knee joint were constructed with high shape fidelity. The intact model included the cortical bone, cancellous bone, articular cartilage, bone marrow, and meniscus. And the total replacement knee FE model, which is consisted of the artificial femoral and tibial components were also prepared to compare the impact propagations with the intact model (Figure 1). Impact load were applied to the proximal femur of the FE models under the same conditions as those of the weight-drop experiments with the knee joint specimens.

The FEA results showed that the impact stress propagated to the tibia through the knee joint for several milliseconds. The values and the time dependent change of the compressive strain on the cortical surface had good agreement with the experimental results. The compressive stress mainly propageted at the medial side, with 1.0 MPa at 1.2 milliseconds.

Especially, the impact stress propagated not only in the cortical surface area which has hard material property but also in the soft cancellous bone region inside the knee joint. The mass density of the cancellous bone has similar to that of the cortical bone, and thus the role of the load bearing in the cancellous area must be much increasing under the impact condition.

In the total replacement model, concentration of the impact compressive stress was observed with 2.8 MPa at the tibial region, while not under the normal intact conditions (Figure 2). Since the total replacement model is formed of different materials and the impact propagations were inhibited by the interfacial condition, such as sliding or debonding, it is considered that the contact condition between such materials have a great effect on the stress propagation.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 354 - 354
1 Dec 2013
Iizawa N Mori A Matsui S Oba R Ito T Takai S
Full Access

Purpose:

Biomechanical knowledge of the medial collateral ligament (MCL) is important for MCL release during knee arthroplasty. The purpose of this study was to define the influences of the deep medial collateral ligament (dMCL) and the posterior oblique ligament (POL) on valgus and rotatory stability in knee arthroplasty.

Methods:

Six cadaveric knees were divided into 2 groups with unique sequential sectioning sequences of the dMCL and the POL. Group A (n = 2) first received femoral arthroplasty only, and thereafter sequentially received medial half tibial resection with spacer, ACL cut, dMCL cut, POL cut, and finally tibial arthroplasty. Group B (n = 4) first received femoral arthroplasty only, and thereafter sequentially received medial half tibial resection with spacer, ACL cut, tibial arthroplasty, dMCL cut, and finally, POL cut. A CT-free navigation system monitored motion after application of valgus loads (10 N-m) and internal and external rotation torques (5 N-m) at 0°, 20°, 30°, 60°, and 90°of knee flexion.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 256 - 256
1 Mar 2013
Matsui S Takai S
Full Access

Quantitative knowledge on the anatomy of the medial collateral ligament (MCL) is important for preventing MCL damage during unicompartmental knee arthroplasty (UKA). The objective of this study was to quantitatively determine the morphology of the medial capsule and deep MCL on tibias.

METHODS

24 cadaveric human knees (control: 19, OA: 5) were dissected to investigate the deep MCL and capsule anatomy. The specimens were fixed in full extension and this position was maintained during the dissection and morphometric measurements. The distance from the tibial insertion sites of the medial capsule including deep MCL to the medial joint surface were measured at anterior, middle, and posterior sites. Posterior capsule slope and posterior tibia slope to the anterior tibia cortex was also measured.

RESULTS

In control, the distance from the tibia insertion sites of the medial capsule including deep MCL to the anterior 1/3, middle 1/3, and posterior 1/3 of medial joint surface were 12.5 ± 1.5 mm and 8.0 ± 1.6 mm and 9.4 ± 1.6 mm, respectively. Posterior capsule slope and posterior tibia slope to the anterior tibia cortex were 6.3 ± 3.3 degree and 12.7 ± 2.1 degree, respectively. In OA, the distance from the tibia insertion sites of the medial capsule including deep MCL to the anterior 1/3, middle 1/3, and posterior 1/3 of medial joint surface were 14.0 ± 1.7 mm and 9.6 ± 1.9 mm and 10.8 ± 1.5 mm, respectively. Posterior capsule slope and posterior tibia slope to the anterior tibia cortex were 8.0 ± 3.5 degree and 14.5 ± 2.2 degree, respectively.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 236 - 236
1 Jun 2012
Takai S
Full Access

562 osteoarthritic knees rated as stage 1 or more according to Kellgren's osteoarthritic knee classification were selected randomly and analyzed radiologically. Eighty cases with the height of 155 cm-160 cm, for which a large number of male and female cases are available (34 male cases, 46 female cases) were extracted for analysis. The values measured were significantly larger in male than in female in any region. In order to clarify differences in morphology between the sexes, the ratio between the values measured of various regions was computed. As a result, the value obtained by dividing the length of medial femoral condyle in anterior-posterior direction and the depth of medial femoral condyle in proximal-distal direction by the width of femur at articular level was 0.87±0.03, 0.56±0.03 in female against 0.81±0.04, 0.52±0.03 in male, respectively. The value obtained by dividing the length of medial tibia condyle in anterior-posterior direction by the width of tibia at articular level was 0.61±0.05 in female against 0.59±0.04 in male. Anteversion of the femur in female was higher than that in male.

When the differences between the sexes were studied, the values measured of various regions were significantly larger in males than in females even in the group of the same height. Morphologically, the knee of males tended to have a larger width than that of females.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 462 - 462
1 Nov 2011
Takai S
Full Access

Soft tissue balancing remains the most subjective and most artistic of current techniques in total knee arthroplasty. It is well known that it is more difficult to achieve posterior roll-back with CR than with PS. Extension and flexion gaps on the sagittal plane, and medial and lateral gaps on the coronal plane have to be well balanced. However, it is very difficult to match these four. Biomechanical properties of the soft tissue were obtained during the surgery, using the specially designed system. The system consists of two electric load cells in the tensioning device, digital output indicators, and an XY plotter. Load displacement curves were obtained in extension and in flexion. Interestingly, the stiffness of curves obtained from the lateral in flexion is 1/3 lower than the other three. However, it is very questionable whether we can adjust these materials precisely and constantly or not.

To achieve posterior roll-back and deep knee flexion, ligament balancing is more important in cruciate retaining TKA than in PS Knee. Posterior impingement and anterior lift-off are often seen during surgery. That means “too tight in flexion”. First of all, elementary correction of the coronal deformity is performed by appropriate removal of osteophytes and soft tissue release. A pre-cut is made 2–3 mm distal to the conventional cutting line at the distal femoral end. Femoral component size is determined in accordance with the antero-posterior dimension. Posterior femoral condylar resection is performed. A load is applied in flexion to measure flexion gap. The extension gap is then measured in extension with the same load as that which was applied in flexion. Additional bone re-cut of the femoral distal end is performed.

The technique is very similar to the classic flexion-extension gap balance technique.

However, the most different point I would like to emphasize is that an accurate and constant load is applied to make both the flexion and extension gaps equal. There is no need to release the PCL using this technique. Therefore, I would like to name this technique “Load dependent gap technique” to emphasize that an accurate and constant load can be clearly applied to equalize the gaps.

In future, using this technique, it could be possible to know what percentage of the load applied in extension should be appropriate in flexion when the two gaps are equalized in TKA.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 410 - 410
1 Nov 2011
Takai S Shimazaki N Nakachi N Mitsuyama H Konaga Y Matsushita T Yoshino N
Full Access

Purpose: The effect of patellar position on soft tissue balancing in total knee arthroplasty (TKA) is under debate. We developed the digital tensor system to measure the load (N) and the distance (mm) of extension and flexion gaps in medial and lateral compartment separately with setting of femoral component trial. The gap load and distance in extension and flexion position of posterior stabilized (PS) and cruciate retaining (CR) TKA in both patella everted and reset position were measured.

Materials and Methods: Thirty-four patients who underwent primary TKA for medial type osteoarthritis using medial parapatellar approach were included. The load was measured at the gap distance, which is equal to the sum of implants including polyethylene insert.

Results: In extension, there was no significant difference between the load in patella everted and reset position in both PS-TKA and CR.-TKA. In flexion, there was a significant decrease of the load, which is comparable to the increase of gap distance of approximately 2mm, by resetting the patella from eversion in PS-TKA.

There was, however, no significant difference in CR-TKA by resetting the patella.

There was no significant difference in the ratio of medial/lateral load in both PSTKA and CR.-TKA.

Conclusion & Significance: Soft tissue balancing of PS-TKA with medial parapatellar approach should be performed after resetting the patella.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 458 - 458
1 Nov 2011
Shimazaki N Nakachi N Mitsuyama H Konaga Y Yoshino N Matsushita T Takai S
Full Access

Newer prosthetic total knee arthroplasty (TKA) designs as well as unicondylar TKAs spare the anterior cruciate ligament (ACL). Although success of these procedures requires near normal ACL function, little has been written about the arthritic ACL.

This study was designed to evaluate the relationship between cross sections of the intercondylar notch and the macroscopic condition of ACL degeneration. Thirty osteoarthritic patients who underwent TKA as a result of severe osteoarthritis were randomly selected. Occupation rate of the osteophytes to the notch width were measured at the anterior 1/3, middle 1/3, and posterior 1/3 notche images obtained from preoperative tunnel view. Macroscopic conditions of the ACL and PCL were classified into four types of Normal, Frayed, Partial rupture, and Absent.

The macroscopic ACL conditions were Normal: 9 cases, Frayed: 9 cases, Partial rupture: 9 cases, and Absent: 3 cases. The macroscopic PCL conditions were Normal: 24 cases, Frayed: 3 cases, Partial rupture: 3 cases, and Absent: 0 case.

Occupation rate of the osteophytes to the notch correlated to the preoperative femorotibial angle (p< 0.05). In terms of ACL, the occupation rate of the osteophytes to the notch were 22.9%, 28.8%, 46.0%, and 81.8% in Normal, Frayed, partial ruptured, and Absent, respectively. The patients with more than 40% occupation rate showed either partial rupture or absent of the ACL during the surgery.

We conclude that occupation rate of the osteophytes to the notch is a good predictor of evaluating the ACL degeneration in osteoarthritic knee.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 172 - 173
1 Mar 2010
Takai S
Full Access

Soft tissue balancing remains the most subjective and most artistic of current techniques in total knee arthroplasty. The flexion gap is traditionally measured at approximately 45 degree of hip flexion and 90 degree of knee flexion on the operation table. Despite of aiming equal joint gaps or tensions in flexion and extension, influence of the thigh weight on the flexion gap has not been documented. Therefore, the purpose of this study was to examine the flexion gaps in the 90–90 degree flexed position and the traditional 45–90 degree flexed position of hip-knee joints.

Thirty patients with osteoarthritic knee underwent total knee arthroplasty. After the PCL sacrifice, soft tissue releases, and bone cuts. Biomechanical properties of the soft tissue were obtained during the surgery, using the specially designed system. The system consists of two electric load cells in the tensioning device, digital output indicators, and an XY plotter. Load displacement curves were obtained in extension and in flexion. 160N was applied to open the joint gaps in the traditional 45–90 degree flexed position and the 90–90 degree flexed position of hip-knee joints. The flexion gap in the 90–90 degree flexed position of hip-knee joints was 2.1±1.2mm wider than that in the traditional 45–90 degree flexed position of hip-knee joints. The flexion gap had significant difference between the two different hip flexion angles (p< 0.001). Interestingly, the stiffness of curves obtained from the lateral in flexion is 1/3 lower than the other three.

In the traditional 45–90 degree flexed position of hip-knee joints on the operation table, the flexion gap is approximately 45 degree to the gravitation and influenced by the thigh weight. To avoid the influence of the thigh weight and obtain equal joint gaps or tensions in flexion and extension, the flexion gap should be checked in the 90–90 degree flexed position of hip-knee joints.

Extension and flexion gaps on the sagittal plane, and medial and lateral gaps on the coronal plane have to be well balanced. However, it is very difficult to match these four. It is still very questionable whether we can adjust these materials precisely and constantly or not.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 160 - 161
1 Mar 2010
Takai S Yoshino N Watanabe N Fukuda Y
Full Access

Purpose: The effect of patellar position on soft tissue balancing in total knee arthroplasty (TKA) is under debate. We developed the digital tensor system to measure the load (N) and the distance (mm) of extension and flexion gaps in medial and lateral compartment separately with setting of femoral component trial. The gap load and distance in extension and flexion position of posterior stabilized (PS) and cruciate retaining (CR) TKA in both patella everted and reset position were measured.

Materials and Methods: Thirty-four patients who underwent primary TKA for medial type osteoarthritis using medial parapatellar approach were included. The load was measured at the gap distance, which is equal to the sum of implants including polyethylene insert.

Results: In extension, there was no significant difference between the load in patella everted and reset position in both PS-TKA and CR.-TKA. In flexion, there was a significant decrease of the load, which is comparable to the increase of gap distance of approximately 2mm, by resetting the patella from eversion in PS-TKA. There was, however, no significant difference in CR-TKA by resetting the patella. There was no significant difference in the ratio of medial/lateral load in both PS-TKA and CR.-TKA.

Conclusion & Significance: Soft tissue balancing of PS-TKA with medial parapatellar approach should be performed after resetting the patella.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 428 - 428
1 Apr 2004
Ohtsuki Y Takai S Yoshino N Kobayashi M Watanabe Y
Full Access

Introduction: Soft tissue balancing remains the most subjective and most artistic of current techniques in total knee arthroplasty. The flexion gap is traditionally measured at approximately 45 degree of hip flexion and 90 degree of knee flexion on the operation table. Despite of aiming equal joint gaps or tensions in flexion and extension, influence of the thigh weight on the flexion gap has not been documented. Therefore, the purpose of this study was to examine the flexion gaps in the 90-90 degree flexed position and the traditional 45-90 degree flexed position of hip-knee joints.

Materials and methods: Thirty patients with osteoarthritic knee underwent total knee arthroplasty. After the PCL sacrifice, soft tissue releases, and bone cuts, the specially designed tenser which has two load cells was employed. 160N was applied to open the joint gaps in the traditional 45-90 degree flexed position and the 90-90 degree flexed position of hip-knee joints.

Results: The flexion gap in the 90-90 degree flexed position of hip-knee joints was 2.1±1.2mm wider than that in the traditional 45-90 degree flexed position of hip-knee joints. The flexion gap had significant difference between the two different hip flexion angles (p< 0.001).

Discussions: In the traditional 45-90 degree flexed position of hip-knee joints on the operation table, the flexion gap is approximately 45 degree to the gravitation and influenced by the thigh weight. To avoid the influence of the thigh weight and obtain equal joint gaps or tensions in flexion and extension, the flexion gap should be checked in the 90-90 degree flexed position of hip-knee joints.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 272 - 272
1 Mar 2003
Hosokawa M Kim W Tsuchida Y Takai S Fukuda Y Yoshino N Kusakabe T Tsutsumi S Kubo T
Full Access

The changes of stress distribution in the femoral head with Perthes disease were observed under several condition. Finite element models were constructed referring to X-ray images and magnetic resonance images of the intact hip joint. The model was divided into five parts: cancellous bone, articular cartilage, necrotic bone, cortical bone, physeal cartilage. Material properties were alloted to these components by the past literature. The body weight and abductor muscle force were applied as loading. The model was altered to study the effect of age, the extent of necrosis, and lateralization of the fomoral head. Analysis were performed on a digital computer PC-9821(NEC) using the finite element program. There was no significant difference in stress distribution patterns regardless of age or extent of necrosis. However, compressive stresses were concentrated on the lateral portion of the epiphysis by lateralization of femoral head. The femoral head deformity in Perthes disease was more affected by the lateralization than by the age and the extent of necrosis.