header advert
Results 51 - 100 of 3792
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 113 - 113
2 Jan 2024
Ghaffari A Rasmussen J Kold S Rahbek O
Full Access

Gait measurements can vary due to various intrinsic and extrinsic factors, and this variability becomes more pronounced using inertial sensors in a free-living environment. Therefore, identifying and quantifying the sources of variability is essential to ensure measurement reliability and maintain data quality.

This study aimed to determine the variability of daily accelerations recorded by an inertial sensor in a group of healthy individuals. Ten participants, four males and six females, with a mean age of 50 years (range: 29–61) and BMI of 26.9 kg/m2 (range: 21.4–36.8), were included. A single accelerometer continuously recorded lower limb accelerations over two weeks. We extracted and analyzed the accelerations of three consecutive strides within walking bouts if the time difference between the bouts was more than two hours. Multivariate mixed-effects modeling was performed on both the discretized acceleration waveforms at 101 points (0–100) and the harmonics of the signals in the frequency domain to determine the variance components for different subjects, days, bouts, and steps as the random effect variables. Intraclass correlation coefficients (ICCs) were calculated for between-day, between-bout, and between-step comparisons.

The results showed that the ICCs for the between-day, between-bout, and between-step comparisons were 0.73, 0.82, 0.99 for the vertical axis; 0.64, 0.75, 0.99 for the anteroposterior axis; and 0.55, 0.96, 0.97 for the mediolateral axis. For the signal harmonics, the respective ICCs were 0.98, 0.98, 0.99 for the vertical axis; 0.54, 0.93, 0.98 for the anteroposterior axis; and 0.69, 0.78, 0.95 for the mediolateral axis.

Overall, this study demonstrated that accelerations recorded continuously for multiple days in a free-living environment exhibit high variability, mainly between days, and some variability arising from differences between walking bouts during different times within days. However, reliable and repeatable gait measurements can be obtained by identifying and quantifying the sources of variability.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 114 - 114
2 Jan 2024
Maglio M Tschon M Sartori M Martini L Rocchi M Dallari D Giavaresi G Fini M
Full Access

The use of implant biomaterials for prosthetic reconstructive surgery and osteosynthesis is consolidated in the orthopaedic field, improving the quality of life of patients and allowing for healthy and better ageing. However, there is the lack of advanced innovative methods to investigate the potentialities of smart biomaterials, particularly for the study of local effects of implant and osteointegration. Despite the complex process of osseointegration is difficult to recreate in vitro, the growing challenges in developing alternative models require to set-up and validate new approaches. Aim of the present study is to evaluate an advanced in vitro tissue culture model of osteointegration of titanium implants in human trabecular bone. Cubic samples (1.5×1.5 cm) of trabecular bone were harvested as waste material from hip arthroplasty surgery (CE AVEC 829/2019/Sper/IOR); cylindrical defects (2 mm Ø, 6 mm length) were created, and tissue specimens assigned to the following groups: 1) empty defects- CTR-; 2) defects implanted with a cytotoxic copper pin (Merck cod. 326429)- CTR+; 3) defects implanted with standard titanium pins of 6 µm-rough (ZARE S.r.l) -Ti6. Tissue specimens were cultured in mini rotating bioreactors in standard conditions, weekly assessing viability. At the 8-week-timepoint, immunoenzymatic, microtomographic, histological and histomorphometric analyses were performed. The model was able to simulate the effects of implantation of the materials, showing a drop in viability in CTR+, differently from Ti6 which appears to have a trophic effect on the bone. MicroCT and histological analysis supported the results, with lower BV/TV and Tb.Th values observed in CTR- compared to CTR+ and Ti6 and signs of matrix and bone deposition at the implant site. The collected data suggest the reliability of the tested model which can recreate the osseointegration process in vitro and can therefore be used for preliminary evaluations to reduce and refine in vivo preclinical models.

Acknowledgment: This work was supported by Emilia-Romagna Region for the project “Sviluppo di modelli biologici in vitro ed in silico per la valutazione e predizione dell'osteointegrazione di dispositivi medici da impianto nel tessuto osseo”


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 11 - 11
2 Jan 2024
Petrucci G Papalia GF Russo F Ambrosio L Papalia R Vadalà G Denaro V
Full Access

Chronic low back pain (CLBP) is the most common cause of disability worldwide, and lumbar spine fusion (LSF) is often chosen to treat pain caused by advanced degenerative disease when clinical treatment failed certain cases, the post-surgical outcomes are not what was expected. Several studies highlight how important are. In psychological variables during the postoperative spine surgery period. The aim of this study is to assess the role of preoperative depression on postoperative clinical outcomes. We included patients who underwent LSF since December 2021. Preoperative depression was assessed administering Beck Depression Inventory questionnaire (BDI). And pain and disability were evaluated at 1, 3, and 6 months, administering respectively Visual Analogic Scale (VAS) and Oswestry Disability Index (ODI). As statistical analysis Mann-Whitney test was performed. We included 46 patients, 20 female (43,5%) and 26 male (56,5%) with an average age of 64,2. The population was divided in two groups, fixing the BDI cut-off point at 10. Patients with BDI < 10 points (N=28) had normal mental health status, instead patients with BDI > 10 points (N=16) had depressive disorders. At 3 months patients with healthy mental status reported statistically significant reduction of pain (U = 372,5, p = .006) and improvement of disability but without statistical significancy (U = 318, p = 0,137). At 6 months patients without psychological disease reported statistically significant reduction of pain (U = 342, p = 0,039) and disability (U = 372,5, p = 0,006).

This study demonstrates the correlation between pre-existing depressive state and poorer clinical outcomes after spine surgery. These results are consistent with the literature. Therefore, during the surgical decision making it is crucial to take psychological variables into account in order to predict the results after surgery and inform patients on the potential influence of mental status.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 74 - 74
2 Jan 2024
Peniche Silva C Dominguez R Bakht S Pardo A Joris V Gonçalves A Texeira S Balmayor E Gomes M van Griensven M
Full Access

Tendons and tendon-to-bone entheses don't usually regenerate after injury, and the hierarchical organization of such tissues makes them challenging sites of study for tissue engineers. In this study, we have tried a novel approach using miRNA and a bioactive bioink to stimulate the regeneration of the enthesis. microRNAs (miRNAs) are short, non-coding sequences of RNA that act as post-transcriptional regulators of gene and protein expression [1]. Mimics or inhibitors of specific miRNAs can be used to restore lost functions at the cell level or improve healing at the tissue level [2,3]. We characterized the healing of a rat patellar enthesis and found that miRNA-16-5p was upregulated in the fibrotic portion of the injured tissue 10 days after the injury. Based on the reported interactions of miRNA-16-5p with the TGF-β pathway via targeting of SMAD3, we aimed to explore the effects of miRNA-16-5p mimics on the tenogenic differentiation of adipose-derived stem cells (ASCs) encapsulated in a bioactive bioink [4,5]. Bioinks with different properties are used for the 3D printing of biomimetic constructs. By integrating cells, materials, and bioactive molecules it is possible to tailor the regenerative capacity of the ink to meet the particular requirements of the tissue to engineer [5]. Here we have encapsulated ASCs in a gelatin-methacryloyl (GelMa) bioink that incorporates miR-16-5p mimics and magnetically responsive microfibers (MRFs). When the bioink is crosslinked in the presence of a magnetic field, the MRFs align unidirectionally to create an anisotropic construct with the ability to promote the tenogenic differentiation of the encapsulated ASCs. Additionally, the obtained GelMA hydrogels retained the encapsulated miRNA probes, which permitted the effective 3D transfection of the ASC and therefore, the regulation of gene expression, allowing to investigate the effects of the miR-16-5p mimics on the tenogenic differentiation of the ASCs in a biomimetic scenario.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 120 - 120
2 Jan 2024
Ambrosio L Vadalà G Petrucci G Russo F Papalia R Denaro V
Full Access

Low back pain (LBP) is the main cause of disability worldwide and is primarily triggered by intervertebral disc degeneration (IDD). Although several treatment options exist, no therapeutic tool has demonstrated to halt the progressive course of IDD. Therefore, several clinical trials are being conducted to investigate different strategies to regenerate the intervertebral disc, with numerous studies not reaching completion nor being published. The aim of this study was to analyze the publication status of clinical trials on novel regenerative treatments for IDD by funding source and identify critical obstacles preventing their conclusion.

Prospective clinical trials investigating regenerative treatments for IDD and registered on ClinicalTrials.gov were included. Primary outcomes were publication status and investigational treatment funding. Fisher's exact test was utilized to test the association for categorical variables between groups.

25 clinical trials were identified. Among these, only 6 (24%) have been published. The most common source of funding was university (52%), followed by industry (36%) and private companies (12%). Investigational treatments included autologous (56%) or allogeneic (12%) products alone or in combination with a carrier or delivery system (32%). The latter were more likely utilized in industry or privately funded studies (Fig. 1, p=0.0112). No significant difference was found in terms of funding regarding the publication status of included trials (Table 1, p=0.9104).

Most clinical trials investigating regenerative approaches for the treatment of IDD were never completed nor published. This is likely due to multiple factors, including difficult enrollment, high dropout rate, and publication bias3. More accurate design and technical support from stakeholders and clinical research organization (CROs) may likely increase the quality of future clinical trials in the field.

For any figures or tables, please contact the authors directly.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 79 - 79
2 Jan 2024
Roncada T Kelly D
Full Access

Cartilage lacks the ability to self-repair when damaged, which can lead to the development of degenerative joint disease. Despite intensive research in the field of cartilage tissue engineering, there is still no regenerative treatment that consistently promotes the development of hyaline cartilage. Extracellular matrix (ECM) derived hydrogels have shown to support cell adhesion, growth and differentiation [1,2]. In this study, porcine articular cartilage was decellularized, solubilised and subsequently modified into a photo-crosslinkable methacrylated cartilage ECM hydrogel. Bone marrow derived mesenchymal stem/stromal cells (MSCs) were encapsulated into both methacrylated ECM hydrogels (ECM-MA) and gelatin methacryloyl (GelMA) as control hydrogel, and their chondrogenic potential was assessed using biochemical assays and histological analysis. We found that successful decellularization of the cartilage tissue could be achieved while preserving key ECM components, including collagen and glycosaminoglycans. A live-dead assay demonstrated good viability of MSCs withing both GelMA and ECM-MA hydrogels on day 7. Large increases in sGAG accumulation was observed after 21 days of culture in chondrogenic media in both groups. Histological analysis revealed the presence of a more fibrocartilage tissue in the GelMA group, while cells embedded within the ECM-MA showed a round and chondrocytic-like morphology. Both groups stained positively for proteoglycans and collagen, with limited evidence of calcium deposition following Alizarin Red staining. These results show that ECM-MA hydrogels support a hyaline cartilage phenotype and robust cartilaginous matrix production. Future studies will focus on the printability of ECM-MA hydrogels to enable their use as bioinks for the biofabrication of functional tissues.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 129 - 129
2 Jan 2024
Gehwolf R
Full Access

Tendons are characterised by an inferior healing capacity when compared to other tissues, ultimately resulting in the formation of a pathologically altered extracellular matrix structure. Although our understanding of the underlying causes for the development and progression of tendinopathies remains incomplete, mounting evidence indicates a coordinated interplay between tendon-resident cells and the ECM is critical. Our recent results demonstrate that the matricellular protein SPARC (Secreted protein acidic and rich in cysteine) is essential for regulating tendon tissue homeostasis and maturation by modulating the tissue mechanical properties and aiding in collagen fibrillogenesis [1,2]. Consequently, we speculate that SPARC may also be relevant for tendon healing.

In a rat patellar tendon window defect model, we investigated whether the administration of recombinant SPARC protein can modulate tendon healing. Besides the increased mRNA expression of collagen type 1 and the downregulation of collagen type 3, a robust increase in the expression of pro-regenerative fibroblast markers in the repair tissue after a single treatment with rSPARC protein was observed. Additionally, pro-fibrotic markers were significantly decreased by the administration of rSPARC. Determination of structural characteristics was also assessed, indicating that the ECM structure can be improved by the application of rSPARC protein. Therefore, we believe that SPARC plays an important role for tendon healing and the application of recombinant SPARC to tendon defects has great potential to improve functional tendon repair.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 10 - 10
2 Jan 2024
Martínez T Mariscal G Hevia E Barrios C
Full Access

The multimodal management of canal stenosis is increasing, and inhibitors of central sensitization are playing a crucial role in central sensitization processes. Pregabalin and gabapentin are antiepileptic drugs that reduce presynaptic excitability. The objective of this study was to investigate whether the use of pregabalin and gabapentin is effective in the symptomatic management of canal stenosis.

A literature search was conducted in four databases. The inclusion criteria were studies that compared pregabalin or gabapentin with a control group in lumbar canal stenosis. Randomized clinical trials and a comparative retrospective cohort study were included. The main clinical endpoints were VAS/NRS, ODI, and RDQ (Roland Morris Disability Questionnaire) at 2, 4, 8 weeks, and 3 months, adverse events, and walking distance were also collected. Data were combined using Review Manager 5.4 software.

Six studies and 392 patients were included. The mean age was 60.25. No significant differences were observed in VAS at 2, 4, and 8 weeks: (MD: 0.23; 95% CI: −0.63-1.09), (MD: −0.04; 95% CI: −0.64 to −0.57), and (MD: −0.6; 95% CI: −1.22 to 0.02). Significant differences were observed in favor of pregabalin with respect to VAS at three months: (MD: −2.97; 95% CI: −3.43 to −2.51). No significant differences were observed in ODI (MD: −3.47; 95% CI: −7.15 to −0.21). Adverse events were significantly higher in the pregabalin/gabapentin group (OR 5.88, 95%CI 1.28-27.05). Walking distance and RDQ could not be compared, although the results were controversial.

Gabapentinoids have not been shown to be superior to other drugs used in the treatment of LSS or to placebo. However, they have shown a higher incidence of adverse effects, improved results in VAS at 3 months, and a slight improvement in ambulation at 4 months in combination with NSAIDs compared to NSAIDs in monotherapy.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 113 - 113
2 Jan 2024
García-Rey E Gómez-Barrena E
Full Access

Pelvic bone defect in patients with severe congenital dysplasia of the hip (CDH) lead to abnormalities in lumbar spine and lower limb alignment that can determine total hip arthroplasty (THA) patients' outcome. These variables may be different in uni- or bilateral CDH.

We compared the clinical outcome and the spinopelvic and lower limb radiological changes over time in patients undergoing THA due to uni- or bilateral CHD at a minimum follow-up of five years.

Sixty-four patients (77 hips) undergoing THA due to severe CDH between 2006 and 2015 were analyzed: Group 1 consisted of 51 patients with unilateral CDH, and group 2, 113 patients (26 hips) with bilateral CDH. There were 32 females in group 1 and 18 in group 2 (p=0.6). The mean age was 41.6 years in group 1 and 53.6 in group 2 (p<0.001). We compared the hip, spine and knee clinical outcomes. The radiological analysis included the postoperative hip reconstruction, and the evolution of the coronal and sagittal spinopelvic parameters assessing the pelvic obliquity (PO) and the sacro-femoro-pubic (SFP) angles, and the knee mechanical axis evaluating the tibio-femoral angle (TFA).

At latest follow-up, the mean Harris Hip Score was 88.6 in group 1 and 90.7 in group 2 (p=0.025). Postoperative leg length discrepancy of more than 5 mm was more frequent in group 1 (p=0.028). Postoperative lumbar back pain was reported in 23.4% of the cases and knee pain in 20.8%, however, there were no differences between groups. One supracondylar femoral osteotomy and one total knee arthroplasty were required. The radiological reconstruction of the hip was similar in both groups. The PO angle improved more in group 1 (p=0.01) from the preoperative to 6-weeks postoperative and was constant at 5 years. The SFP angle improved in both groups but there were no differences between groups (p=0.5). 30 patients in group 1 showed a TFA less than 10º and 17 in group 2 (p=0.7).

Although the clinical outcome was better in terms of hip function in patients with bilateral CDH than those with unilateral CDH, the improvement in low back and knee pain was similar. Patients with unilateral dysplasia showed a better correction of the PO after THA. All spinopelvic and knee alignment parameters were corrected and maintained over time in most cases five years after THA.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 117 - 117
2 Jan 2024
Hankenson K
Full Access

Growth factors produced by inflammatory cells and mesenchymal progenitors are required for proper bone regeneration. Signaling pathways activated downstream of these proteins work in concert and synergistically to drive osteoblast and/or chondrocyte differentiation. While dysregulation can result in abnormal healing, activating these pathways in the correct spatiotemporal context can enhance healing. Bone morphogenetic protein (BMP) signaling is well-recognized as being required for bone regeneration, and BMP is used clinically to enhance bone healing. However, it is imperative to develop new therapeutics that can be used alone or in conjunction with BMP to drive even more robust healing. Notch signaling is another highly conserved signaling pathway involved in tissue development and regeneration. Our work has explored Notch signaling during osteoblastogenesis and bone healing using both in vitro studies with human primary mesenchymal progenitor cells and in vivo studies with genetically modified mouse models. Notch signaling is required and sufficient for osteoblast differentiation, and is required for proper bone regeneration. Indeed, intact Notch signaling through the Jagged-1 ligand is required for BMP induced bone formation. On-going work continues to explore the intersection between BMP and Notch signaling, and determining cell types that express Notch receptors and Notch ligands during bone healing. Our long-term objective is to develop Notch signaling as a clinical therapy to repair bone.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 19 - 19
2 Jan 2024
Castagno S Birch M van der Schaar M McCaskie A
Full Access

Precision health aims to develop personalised and proactive strategies for predicting, preventing, and treating complex diseases such as osteoarthritis (OA). Due to OA heterogeneity, which makes developing effective treatments challenging, identifying patients at risk for accelerated disease progression is essential for efficient clinical trial design and new treatment target discovery and development.

To create a reliable and interpretable precision health tool that predicts rapid knee OA progression over a 2-year period from baseline patient characteristics using an advanced automated machine learning (autoML) framework, “Autoprognosis 2.0”.

All available 2-year follow-up periods of 600 patients from the FNIH OA Biomarker Consortium were analysed using “Autoprognosis 2.0” in two separate approaches, with distinct definitions of clinical outcomes: multi-class predictions (categorising disease progression into pain and/or radiographic progression) and binary predictions. Models were developed using a training set of 1352 instances and all available variables (including clinical, X-ray, MRI, and biochemical features), and validated through both stratified 10-fold cross-validation and hold-out validation on a testing set of 339 instances. Model performance was assessed using multiple evaluation metrics. Interpretability analyses were carried out to identify important predictors of progression.

Our final models yielded higher accuracy scores for multi-class predictions (AUC-ROC: 0.858, 95% CI: 0.856-0.860) compared to binary predictions (AUC-ROC: 0.717, 95% CI: 0.712-0.722). Important predictors of rapid disease progression included WOMAC scores and MRI features. Additionally, accurate ML models were developed for predicting OA progression in a subgroup of patients aged 65 or younger.

This study presents a reliable and interpretable precision health tool for predicting rapid knee OA progression. Our models provide accurate predictions and, importantly, allow specific predictors of rapid disease progression to be identified. Furthermore, the transparency and explainability of our methods may facilitate their acceptance by clinicians and patients, enabling effective translation to clinical practice.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 121 - 121
2 Jan 2024
Liepe K Baehr M
Full Access

After knee replacement, therapy resistant, chronic synovitis is common and leads to effusion and pain.

A cohort of 55 patients with 57 knee replacements and chronic synovitis underwent radiosynoviorthesis. In summary, 101 joints were treated using 182±9 MBq of 90Y-citrate. The number of radiosynoviorthesis ranged from 1 to 4 (53%, 21%, 23%, and 4%). Every patient received a 99mTc-MDP scintigraphy before and three months after every radiosynoviorthesis. Follow-up ranged from 5.7 to 86.7 months. For qualitative analysis, an four steps scoring was used (0 = no response or worsening, 1 = slight, 2 = good, 3 = excellent response). For quantification, the uptake was determined within the 99mTc-MDP scintigraphy soft tissue phase before and after therapy.

At the end of long-term follow-up 27% of patients have an excellent, 24% good, 30% slight and 20% no response. The duration of response was 7.5±8.3 months (maximum 27 months). In repeated treatment, the effect after the first therapy was lesser than in patients who received a single treatment in total. However, three months after the last radiosynoviorthesis, patients with repeated treatment showed a similar effectiveness than single treated patients. At the end of long-term follow-up, patients with repeated radiosynoviorthesis had a higher effectiveness at similar duration response. In the 99mTc-MDP scan 65% of patients showed a reduction of uptake. When comparing subjective and objective response 78% of patients showed a concordance in both, symptoms and scintigraphy. Pilot histological analysis revealed that the synovitis is triggered by small plastic particles.

Radiosynoviorthesis is effective in patients with knee replacement and chronic synovitis. It shows good subjective and objective response rates and long response duration. Repeated treatment leads to a stronger long-time response. The chronic synovitis is caused by plastic particles, which result from the abrasion of the polymeric inlay of endoprothesis.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 20 - 20
2 Jan 2024
Novais E Brown E Ottone O Tran V Lepore A Risbud M
Full Access

Despite the clinical relevance of back pain and intervertebral disc herniation, the lack of reliable models has strained their molecular understanding. We characterized the lumbar spinal phenotype of C57BL/6 and SM/J mice during aging. Interestingly, old SM/J lumbar discs evidenced accelerated degeneration, associated with high rates of disc herniation. SM/J AF's and degenerative human's AF transcriptomic profiles showed altered immune cell, inflammation, and p53 pathways. Old SM/J mice presented increased neuronal markers in herniated discs, thicker subchondral bone, and higher sensitization to pain. Dorsal root ganglia transcriptomic studies and spinal cord analysis exhibited increased pain and neuroinflammatory markers associated with altered extracellular matrix regulation. Immune system single-cell and tissue level analysis showed distinctive T-cell and B-cell modulation and negative correlation between mechanical allodynia and INF-α, IL-1β, IL2, and IL4, respectively. This study underscores the multisystemic network behind back pain and highlights the role of genetic background and the immune system in disc herniation disease.

Acknowledgments: This study is supported by grants from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) R01AR055655, R01AR064733, R01AR074813 to MVR.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 65 - 65
2 Jan 2024
Callens S Burdis R Cihova M Kim J Lau Q Stevens MM
Full Access

Cells typically respond to a variety of geometrical cues in their environment, ranging from nanoscale surface topography to mesoscale surface curvature. The ability to control cellular organisation and fate by engineering the shape of the extracellular milieu offers exciting opportunities within tissue engineering. Despite great progress, however, many questions regarding geometry-driven tissue growth remain unanswered.

Here, we combine mathematical surface design, high-resolution microfabrication, in vitro cell culture, and image-based characterization to study spatiotemporal cell patterning and bone tissue formation in geometrically complex environments. Using concepts from differential geometry, we rationally designed a library of complex mesostructured substrates (101-103 µm). These substrates were accurately fabricated using a combination of two-photon polymerisation and replica moulding, followed by surface functionalisation. Subsequently, different cell types (preosteoblasts, fibroblasts, mesenchymal stromal cells) were cultured on the substrates for varying times and under varying osteogenic conditions. Using imaging-based methods, such as fluorescent confocal microscopy and second harmonic generation imaging, as well as quantitative image processing, we were able to study early-stage spatiotemporal cell patterning and late-stage extracellular matrix organisation. Our results demonstrate clear geometry-dependent cell patterning, with cells generally avoiding convex regions in favour of concave domains. Moreover, the formation of multicellular bridges and collective curvature-dependent cell orientation could be observed. At longer time points, we found clear and robust geometry-driven orientation of the collagenous extracellular matrix, which became apparent with second harmonic generation imaging after ∼2 weeks of culture.

Our results highlight a key role for geometry as a cue to guide spatiotemporal cell and tissue organisation, which is relevant for scaffold design in tissue engineering applications. Our ongoing work aims at understanding the underlying principles of geometry-driven tissue growth, with a focus on the interactions between substrate geometry and mechanical forces.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 23 - 23
2 Jan 2024
Dragonas C Waseem S Simpson A Leivadiotou D
Full Access

The advent of modular implants aims to minimise morbidity associated with revision of hemiarthroplasty or total shoulder arthroplasty (TSA) to reverse shoulder arthroplasty (RSR) by allowing retention of the humeral stem. This systematic review aimed to summarise outcomes following its use and reasons why modular humeral stems may be revised.

A systematic review of Pubmed, Medline and EMBASE was performed according to PRISMA guidelines of all patients undergoing revision of a modular hemiarthroplasty or TSA to RSR. Primary implants, glenoid revisions, surgical technique and opinion based reports were excluded. Collected data included demographics, outcomes and incidence of complications.

277 patients were included, with a mean age of 69.8 years (44-91) and 119 being female. Revisions were performed an average of 30 months (6-147) after the index procedure, with the most common reason for revision being cuff failure in 57 patients. 165 patients underwent modular conversion and 112 underwent stem revision. Of those that underwent humeral stem revision, 18 had the stem too proximal, in 15 the stem was loose, 10 was due to infection and 1 stem had significant retroversion. After a mean follow up of 37.6 months (12-91), the Constant score improved from a mean of 21.8 to 48.7. Stem revision was associated with a higher complication rate (OR 3.13, 95% CI 1.82-5.39).

The increased use of modular stems has reduced stem revision, however 40% of these implants still require revision due to intra-operative findings. Further large volume comparative studies between revised and maintained humeral stems post revision of modular implants can adequately inform implant innovation to further improve the stem revision rate.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 66 - 66
2 Jan 2024
Nikody M Li J Koper D Balmayor E Habibovic P Moroni L
Full Access

Critical-sized bone defects remain challenging in the clinical setting. Autologous bone grafting remains preferred by clinicians. However, the use of autologous tissue is associated with donor-site morbidity and limited accessibility to the graft tissue. Advances in the development of synthetic bone substitutes focus on improving their osteoinductive properties. Whereas osteoinductivity has been demonstrated with ceramics, it is still a challenge in case of polymeric composites. One of the approaches to improve the regenerative properties of biomaterials, without changing their synthetic character, is the addition of inorganic ions with known osteogenic and angiogenic properties. We have previously reported that the use of a bioactive composite with high ceramic content composed of poly(ethyleneoxide terephthalate)/poly(butylene terephthalate) (1000PEOT70PBT30, PolyActive, PA) and 50% beta-tricalcium phosphate (β-TCP) with the addition of zinc in a form of a coating of the TCP particles can enhance the osteogenic differentiation of human mesenchymal stromal cells (hMSCs) (3). To further support the regenerative properties of these scaffolds, inorganic ions with known angiogenic properties, copper or cobalt, were added to the coating solution.

β-TCP particles were immersed in a zinc and copper or zinc and cobalt solution with a concentration of 15 or 45 mM. 3D porous scaffolds composed of 1000PEOT70PBT30 and pure or coated β-TCP were additively manufactured by 3D fibre deposition. The osteogenic and angiogenic properties of the fabricated scaffolds were tested in vitro through culture with hMSCs and human umbilical vein endothelial cells, respectively. The materials were further evaluated through ectopic implantation in an in vivo mini-pig model. The early expression of relevant osteogenic gene markers (collagen-1, osteocalcin) of hMSCs was upregulated in the presence of lower concentration of inorganic ions. Further analysis will focus on the evaluation of ectopic bone formation and vascularisation of these scaffolds after implantation in a mini-pig ectopic intramuscular model.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 137 - 137
2 Jan 2024
Ghaffari A Lauritsen RK Christensen M Thomsen T Mahapatra H Heck R Kold S Rahbek O
Full Access

Smartphones are often equipped with inertial sensors capable of measuring individuals' physical activities. Their role in monitoring the patients' physical activities in telemedicine, however, needs to be explored. The main objective of this study was to explore the correlation between a participant's daily step counts and the daily step counts reported by their smartphone. This prospective observational study was conducted on patients undergoing lower limb orthopedic surgery and a group of non-patients. The data collection period was from 2 weeks before until four weeks after the surgery for the patients and two weeks for the non-patients. The participants' daily steps were recorded by physical activity trackers employed 24/7, and an application recorded the number of daily steps registered by the participants' smartphones. We compared the cross-correlation between the daily steps time-series taken from the smartphones and physical activity trackers in different groups of participants. We also employed mixed modeling to estimate the total number of steps. Overall, 1067 days of data were collected from 21 patients (11 females) and 10 non-patients (6 females). The cross-correlation coefficient between the smartphone and physical activity tracker was 0.70 [0.53–0.83]. The correlation in the non-patients was slightly higher than in the patients (0.74 [0.60–0.90] and 0.69 [0.52–0.81], respectively). Considering the ubiquity, convenience, and practicality of smartphones, the high correlation between the smartphones and the total daily step time-series highlights the potential usefulness of smartphones in detecting the change in the step counts in remote monitoring of the patient's physical activity.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 127 - 127
2 Jan 2024
Moschini G
Full Access

Tendinopathy is the most common form of chronic tendon disorders, accounting for up 30% of all musculoskeletal clinic visits [1]. In tendon disease, the largely avascular tendon tissue often becomes hypervascularized and fibrotic [2]. As blood vessel growth and angiogenic signaling molecules are often induced by the lack of adequate nutrients and oxygen, hypoxic signaling is speculated to be a root cause of tendon neovascularization and tendinopathy [3,4,5]. However, how the vascular switch is initiated in tendons, and how vascularization contributes to tendon pathology remains unknown. In this talk, we provide evidence that HIF-1α is implicated in tendon disease and HIF-1α stabilization in human tendon cells induces vascular recruitment of endothelial cells via VEGFa secretion. More interesting, HIF-1α stabilization in tendon cells in vivo, seems to recapitulate all main features of fibrotic human tendon disease, including vascular ingrowth, matrix disorganization, changes in tissue mechanics, cell proliferation and innervation. Surprisingly, in vivo knock-out of VEGFa rescued angiogenesis in the tendon core but it did not affect tendon mechanical properties and tissue pathophysiological changes, suggesting that blood vessels ingrowth might not be a primary cause but a consequence of HIF-1α activation.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 99 - 99
2 Jan 2024
Johansen Å Lin J Yamada S Yassin MA Hutchinson D Malkoch M Mustafa K
Full Access

Several synthetic polymers have been widely investigated for their use in bone tissue engineering applications, but the ideal material is yet to be engineered. Triazine-trione (TATO) based materials and their derivatives are novel in the field of biomedical engineering but have started to draw interest. Different designs of the TATO monomers and introduction of different chemical linkages and end-groups widens the scope of the materials due to a range of mechanical properties.

The aim of our work is to investigate novel TATO based materials, with or without hydroxyapatite filler, for their potential in bone tissue engineering constructs. Initially the biocompatibility of the materials was tested, indirectly and directly, according to ISO standards. Following this the osteoconductive properties were investigated with primary osteoblasts and an osteoblastic cell line. Bone marrow derived mesenchymal stem cells were used to evaluate the osteogenic differentiation and consequently the materials potential in bone tissue engineering applications.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 57 - 57
2 Jan 2024
Castilho M
Full Access

Orthopaedic soft tissues, such as tendons, ligaments, and articular cartilage, rely on their unique collagen fiber architectures for proper functionality. When these structures are disrupted in disease or fail to regenerate in engineered tissues, the tissues transform into dysfunctional fibrous tissues. Unfortunately, collagen synthesis in regenerating tissues is often slow, and in some cases, collagen fibers do not regenerate naturally after injury, limiting repair options. One of the research focuses of my team is to develop functional fiber replacements that can promote in vivo repair of musculoskeletal tissues throughout the body. In this presentation, I will discuss our recent advancements in electrowriting 3D printing of natural polymers for creating functional fiber replacements. This manufacturing process utilizes electrical signals to control the flow of polymeric materials through an extrusion nozzle, enabling precise deposition of polymeric fibers with sizes that cannot be achieved using conventional extrusion printing methods. Furthermore, it allows for the formation of fiber organizations that surpass the capabilities of conventional electrospinning processes. During the presentation, I will showcase examples of electrowritten microfiber scaffolds using various naturally-derived polymers, such as gelatin (a denatured form of collagen) and silk fibroin. I will discuss the functional properties of silk-based scaffolds and highlight how they exhibit restored β-sheet and α-helix structures [1]. This restoration results in an elastic response of up to 20% deformation and the ability to withstand cyclic loading without plastic deformation. Additionally, I will present our latest results on the compatibility of this technique with patterning cell-laden fiber structures [2]. This novel biofabrication process allows for the printing of biomimetic microscale architectures with high cell viability, and offers a promising approach to understanding how shear and elongation forces influence cell development of hierarchical (collagen) fibers.

Acknowledgements: The author would like to thank the Reprint project (OCENW.XS5.161) and the program “Materials Driven Regeneration” (024.003.013) by the Netherlands Organization for Scientific Research for the financial support.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 101 - 101
2 Jan 2024
Risbud MV
Full Access

The hypoxic nucleus pulposus cells were thought to contain few, functionally redundant mitochondria. However in contrast to this widely held notion, new evidence shows presence of functional mitochondrial networks in disc cells. The lecture will discuss this evidence and provide insights into how microenvironmental cues govern mitochondrial function. The lecture will also discuss emerging evidence on how mitochondrial dysfunction of nucleus pulposus cells results in metabolic dysregulation and acquisition of a state that promotes inflammation and degeneration.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 141 - 141
2 Jan 2024
Ruiz-Fernández C Eldjoudi D Gonzalez-Rodríguez M Barreal A Farrag Y Mobasheri A Pino J Sakai D Gualillo O
Full Access

Monomeric C reactive protein (mCRP) presents important proinflammatory effects in endothelial cells, leukocytes, or chondrocytes. However, CRP in its pentameric form exhibits weak anti-inflammatory activity. It is used as a biomarker to follow severity and progression in infectious or inflammatory diseases, such as intervertebral disc degeneration (IVDD). This work assesses for the first time the mCRP effects in human intervertebral disc cells, trying to verify the pathophysiological relevance and mechanism of action of mCRP in the etiology and progression of IVD degeneration.

We demonstrated that mCRP induces the expression of multiple proinflammatory and catabolic factors, like nitric oxide synthase 2 (NOS2), cyclooxygenase 2 (COX2), matrix metalloproteinase 13 (MMP13), vascular cell adhesion molecule 1 (VCAM1), interleukin (IL)-6, IL-8, and lipocalin 2 (LCN2), in human annulus fibrosus (AF) and nucleus pulposus (NP) cells. We also showed that nuclear factor-κβ (NF-κβ), extracellular signal-regulated kinase 1/2 (ERK1/2), and phosphoinositide 3-kinase (PI3K) are at play in the intracellular signaling of mCRP.

Our results indicate that the effect of mCRP is persistent and sustained, regardless of the proinflammatory environment, as it was similar in healthy and degenerative human primary AF cells. This is the first article that demonstrates the localization of mCRP in intravertebral disc cells of the AF and NP and that provides evidence for the functional activity of mCRP in healthy and degenerative human AF and NP disc cells.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 59 - 59
2 Jan 2024
Bakht S Pardo A Reis R Domingues R Gomes M
Full Access

A major obstacle in biofabrication is replicating the organization of the extracellular matrix and cellular patterns found in anisotropic tissues within bioengineered constructs. While magnetically-assisted 3D bioprinting techniques have the potential to create scaffolds that mimic natural biological structures, they currently lack the ability to accurately control the dispersion of magnetic substances within the bioinks without compromising the fidelity of the intended composite. To overcome this dichotomy, the concepts of magnetically- and matrix-assisted 3D bioprinting are combined here. This method preserves the resolution of printed structures by keeping low viscosity bioinks uncrosslinked during printing, which allows for the arrangement of magnetically-responsive microfibers without compromising the structural integrity of the design. Solidification is induced after the microfibers are arranged in the desired pattern. Furthermore, the precise design of these magnetic microfillers permits the utilization of low levels of inorganic materials and weak magnetic field strengths, which reduces the potential risks that may be associated with their use. The effectiveness of this approach is evaluated in the context of tendon tissue engineering, and the results demonstrate that combining the tendons like anisotropic fibrous microstructure with remote magneto-mechanical stimulation during in vitro maturation provides both biochemical and biophysical cues that effectively guide human adipose-derived stem cells towards a tenogenic phenotype In summary, the developed strategy allows the fabrication of anisotropic high-resolution magnetic composites with remote stimulation functionalities, opening new horizons for tissue engineering applications.

Acknowledgments: ERC Grant CoG MagTendon nr 772817, BioChips PoC project nr 10106930, (PD/BD/129403/2017), (CEECIND/01375/2017), (2020.03410.CEECIND), (2022.05526.PTDC), (ED481B2019/025).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 1 - 1
2 Jan 2024
Evans C
Full Access

Intra-articular injection is a common way to deliver biologics to joints, but their effectiveness is limited by rapid clearance from the joint space. This barrier can be overcome by genetically modifying cells within the joint such that they produce anti-arthritic gene products endogenously, thereby achieving sustained, therapeutic, intra-articular concentrations of the transgene products without re-dosing. A variety of non-viral and viral vectors have been subjected to preclinical testing to evaluate their suitability for delivering genes to joints. The first transfer of a gene to a human joint used an ex vivo protocol involving retrovirally transduced, autologous, synovial fibroblasts. Recent advances in vector technology allow in vivo delivery using adeno-associated virus (AAV). We have developed an AAV vector encoding the interleukin-1 receptor antagonist (AAV.IL-1Ra) for injection into joints with osteoarthritis (OA). It showed efficacy and safety in equine and rat models of OA, leading to a recently-completed, investigator-initiated, Phase I, dose-escalation clinical trial in 9 subjects with mid-stage OA of the knee (ClinicalTrials.gov Identifier: NCT02790723). Three cohorts of three subjects with mild to moderate OA in the index knee were injected intra-articularly under ultrasound guidance with a low (10e11 viral genomes) medium (10e12 viral genomes) or high (10e13 viral genomes) dose of AAV.IL-1Ra and followed for one year. The data confirm safety, with evidence of sustained intra-articular expression of IL-1Ra and a clinical response in certain subjects. Funding for a subsequent Phase Ib trial involving 50 subjects (ClinicalTrials.gov Identifier: NCT05835895), expected to start later this year, has been acquired. Progress in this area has stimulated commercial activity and there are now at least seven different companies developing gene therapies for OA and a number of clinical trials are in progress.

Acknowledgement: Clinical trial funded by US Department of Defense Clinical Trial Award W81XWH-16-1-0540.


Full Access

To date, few studies have investigated the feasibility of the loop-mediated isothermal amplification (LAMP) assay for identifying pathogens in tissue samples. This study aimed to investigate the feasibility of LAMP for the rapid detection of methicillin-susceptible or methicillin-resistant Staphylococcus aureus (MSSA or MRSA) in tissue samples, using a bead-beating DNA extraction method. Twenty tissue samples infected with either MSSA (n = 10) or MRSA (n = 10) were obtained from patients who underwent orthopedic surgery for suspected musculoskeletal infection between December 2019 and September 2020. DNA was extracted from the infected tissue samples using the bead-beating method. A multiplex LAMP assay was conducted to identify MSSA and MRSA infections. To recognize the Staphylococcus genus, S. aureus, and methicillin resistance, 3 sets of 6 primers for the 16S ribosomal ribonucleic acid (rRNA) and the femA and mecA genes were used, respectively. The limit of detection and sensitivity (detection rate) of the LAMP assay for diagnosing MSSA and MRSA infection were analyzed. The results of this study suggest that the LAMP assay performed with tissue DNA samples can be a useful diagnostic method for the rapid detection of musculoskeletal infections caused by MSSA and MRSA.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 87 - 87
2 Jan 2024
Vargel I Açil M Tuncel S Baysal N Hartuç I Okur H Korkusuz F
Full Access

Deriving autologous mesenchymal stem cells (MSCs) from adipose tissues without using enzymes requires sophisticated biomedical instruments. Applied pressure on tissues and cells are adjusted manually although centrifugation and filtration systems are frequently used. The number of derived MSCs therefore could differ between instruments. We compared the number of MSCs obtained from four commercially available devices and our newly designed and produced instrument (A2, B3, L3, M2 and T3). Three-hundred mL of adipose tissue was obtained from a female patient undergoing liposuction using the transillumination solution. Obtained tissue was equally distributed to each device and handled according to the producers' guides. After handling, 3 mL stromal vascular fraction (SVF) was obtained from each device. Freshly isolated SVF was characterized using multi-color flow cytometry (Navios Flow Cytometer, Beckman Coulter, USA). Cell surface antigens were chosen according to IFATS and ISCT. CD31-FITC, CD34-PC5,5, CD73-PE, CD90-PB and CD45-A750 (Backman Coulter, USA) fluorochrome-labeled monoclonal antibodies were assessed. Markers were combined with ViaKrome (Beckman Coulter, USA) to determine cell viability. At least 105 cells were acquired from each sample. A software (Navios EX, Beckman Coulter, USA) was used to create dot plots and to calculate the cell composition percentages. The data was analyzed in the Kaluza 2.1 software package (Beckman Coulter, USA). Graphs were prepared in GraphPad Prism. CD105 PC7/CD31 FITC cell percentages were 23,9%, 13,5%, 24,6%, 11,4% and 28,8% for the A2, B3, L3, M2 and T3 devices, respectively. We conclude that the isolated MSC percentage ranged from 11,4% to 28,8% between devices. The number of MSCs in SVF are key determinants of success in orthobiological treatments. Developing a device should focus on increasing the number of MSCs in the SVF while preserving its metabolic activity.

Acknowledgments: Scientific and Technological Research Council of Türkiye (TÜBİTAK)- Technology and Innovation Funding Program Directorate (TEYDEB) funded this project (#321893). Servet Kürümoğlu and Bariscan Önder of Disposet Ltd., Ankara, Türkiye (www.disposet.com) contributed to the industrial design and research studies. Ali Tuncel and Feza Korkusuz are members of the Turkish Academy of Sciences (TÜBA). Nilsu Baysal was funded by the STAR Program of TÜBITAK Grant # 3210893.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 46 - 46
2 Jan 2024
Fleischmann N Braun T Reinhardt A Schotte T Wehrmann J Rüdig V Gögele C Kokozidou M Werner C Schulze-Tanzil G
Full Access

Osteoarthritis (OA) and diabetis mellitus type 2 (DMT2) are pathogenetically linked. Complement dysregulation contributes to OA and could be involved in DMT2. The inflammatory anaphylatoxin C5a is released during complement activation. This study aims to understand the specific responses of chondrocytes isolated from diabetic and non-diabetic rats exposed to C5a and/or the proinflammatory cytokine TNFα in vitro dependent on the glucose supply. Articular chondrocytes of adult Zucker Diabetic Fatty (ZDF) rats (homozygous: fa/fa, diabetic, heterozygous: fa/+, lean controls) were exposed to 10 ng/mL TNFα and 25 ng/mL C5a alone or in combination, both, under normo- (NG, 1 g/L glucose) and hyperglycemic (HG, 4.5 g/L glucose) conditions (4 or 24 h). Chondrocyte survival, metabolic activity and gene expression of collagen type 2, suppressors of cytokine signaling (SOCS)1, −3 and anti-oxidative hemoxygenase-1 (HMOX1) were assessed. The complement regulatory protein CD46 and cell nuclei sizes were analyzed. Chondrocyte vitality remained unaffected by the treatment. Metabolic activity was impaired in chondrocytes of non-diabetic rats under HG conditions. Collagen type 2 transcription was suppressed by TNFα under HG condition in chondrocytes from nondiabetic donors and under both conditions in those of DMT2 rats (24 h)

Except for DMT2 chondrocytes under HG (4 h), HMOX1 was generally induced by TNFα +/- C5a (NG, HG). C5a elevated HMOX1 only in chondrocytes of controls. The SOCS1/3 genes were increased by TNFα (NG, diabetic, non diabetic, 4 and 24 h). This could also be observed in chondrocytes of diabetic, but not of lean rats (24 h, HG). At 4 h, C5a induced SOCS1 only in non diabetic chondrocytes (NG, HG). Cytoprotective CD46 protein was suppressed by TNFα under NG condition. Nuclear volumes of chondrocyte were lower in chondrocytes from DMT2 rats compared to those from controls. The differential response suggests that chondrocytes are irreversibly compromised by DMT2.

Achnowledgement: The authors are grateful for the support by the “Stiftung Edoprothetik (S 04/21)”


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 49 - 49
2 Jan 2024
Gantenbein B
Full Access

Stem cell therapy for the intervertebral disc (IVD) is highly debated but holds great promises. From previous studies, it is known that notochordal cells are highly regenerative and may stimulate other differentiated cells to produce more matrix. Lately, a particular tissue-specific progenitor cell population has been identified in the centre of the intervertebral disc (IVD. The current hope is that these nucleus pulposus progenitor cells (NPPC) could play a particular role in IVD regeneration.

Current evidence confirms the presence of these cells in murine, canine, bovine and in the human fetal/surgical samples. Noteworthy, one of the main markers to identify these cells, i.e., Tie2, is a typical marker for endothelial cells. Thus, it is not very clear what their origin and their role might be in the context of developmental biology. In human surgical specimens, their presence is, even more, obscured depending on the donor's age and the condition of the IVD and other yet unknown factors.

Here, I revisit the recent literature on regenerative cells identified for the IVD in the past decades. Current evidence how these NPPC can be isolated and detected in various species and tissues will be recapitulated. Future directions will be provided on how these progenitor cells could be used for regenerative medicine and tissue engineering.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 92 - 92
2 Jan 2024
Forteza-Genestra MA Antich-Rosselló M Ráez-Meseguer C Ramis-Munar G Sangenís AT Calvo J Gayà A Monjo M Ramis JM
Full Access

Osteoarthritis (OA) is a degenerative disease that lacks regenerative treatment options. Current research focuses on mesenchymal stem cells (MSCs) and Platelet-Rich Plasma (PRP) as regenerative therapies, but extracellular vesicles (EVs) have shown to be more advantageous. This study compares the regenerative potential of human umbilical cord MSC-derived EVs (cEVs) and platelet-derived EVs (pEVs) in ex vivo and in vivo OA models.

In the ex vivo study, OA conditions were induced in human cartilage explants, which were then treated either with pEVs or cEVs. Results showed a higher content of DNA and collagen in the pEVs group compared to control and cEVs groups, suggesting that pEVs could be a potential alternative to cEVs.

In the in vivo study, an OA model was established in the knee joints of rats through MIA (monoiodoacetate) injection and then treated either with pEVs or cEVs. Results showed that pEVs-treated knee joints had better subchondral bone integrity and greater OA reversion, particularly in female rats, indicating that pEVs are a viable regeneration treatment for OA and outperform cEVs in terms of efficacy.

Overall, the study demonstrates the potential of EVs as a regenerative treatment for OA, with pEVs showing promising results in both ex vivo and in vivo models. The use of pEVs in clinical practice could provide a faster path to translation due to the established use of platelet concentrates in therapeutics. However, further studies are needed to fully evaluate the potential of pEVs for OA treatment and to elucidate the mechanisms behind their regenerative effects.

Acknowledgments: The authors thank Dr Fernando Hierro (UIB) for their technical contribution with TEM, Mª Trinidad García (UIB) for the access to radioactivity facilities, Aina Arbós (IUNICS) for her contribution in the histology staining, María Tortosa (IdISBa) for her assistance with the animal care and ADEMA School of Dentistry for the access to the cone beam computed tomography (CBCT).

Funding: This research was funded by Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, co-funded by the ESF European Social Fund and the ERDF European Regional Development Fund (MS16/00124; CP16/00124), PROGRAMA JUNIOR del proyecto TALENT PLUS, construyendo SALUD, generando VALOR (JUNIOR01/18), financed by the sustainable tourism tax of the Balearic Islands; the Direcció General d'Investigació and Conselleria d'Investigació, Govern Balear (FPI/2046/2017); the Mecanisme de Recuperació i Resiliència, intended to execute research projects of «Noves polítiques públiques per a un mercat de treball dinàmic, resilient i inclusiu», collected in Pla de Recuperació, Transformació i Resiliència, financed by European Union-Next Generation EU and driven by SOIB and Conselleria de Fons Europeus, Universitat i Cultura i la Conselleria de Model Econòmic, Turisme i Treball (NG0421) and the grant SYN20/03 from IdISBa.


The relationship of degeneration to symptoms has been questioned. MRI detects apparently similar disc degeneration and degenerative changes in subjects both with and without back pain. We aimed to overcome these problems by re-annotating MRIs from asymptomatic and symptomatic groups onto the same grading system.

We analysed disc degeneration in pre-existing large MRI datasets. Their MRIs were all originally annotated on different scales. We re-annotated all MRIs independent of their initial grading system, using a verified, rapid automated MRI annotation system (SpineNet) which reported degeneration on the Pfirrmann (1-5) scale, and other degenerative features (herniation, endplate defects, marrow signs, spinal stenosis) as binary present/absent. We compared prevalence of degenerative features between symptomatics and asymptomatics.

Pfirrmann degeneration grades in relation to age and spinal level were very similar for the two independent groups of symptomatics over all ages and spinal levels. Severe degenerative changes were significantly more prevalent in discs of symptomatics than asymptomatics in the caudal but not the rostral lumbar discs in subjects < 60 years. We found high co-existence of degenerative features in both populations. Degeneration was minimal in around 30% of symptomatics < 50 years.

We confirmed age and disc level are significant in determining imaging differences between asymptomatic and symptomatic populations and should not be ignored. Automated analysis, by rapidly combining and comparing data from existing groups with MRIs and information on LBP, provides a way in which epidemiological and ‘big data’ analysis could be advanced without the expense of collecting new groups.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 134 - 134
2 Jan 2024
Ghezzi D Sartori M Boi M Montesissa M Sassoni E Fini M Baldini N Cappelletti M Graziani G
Full Access

Prosthetic joint infections represent complications connected to the implantation of biomedical devices, they have high incidence, interfere with osseointegration, and lead to a high societal burden. The microbial biofilm, which is a complex structure of microbial cells firmly attached to a surface, is one of the main issues causing infections. Biofilm- forming bacteria are acquiring more and more resistances to common clinical treatments due to the abuse of antibiotics administration. Therefore, there is increasing need to develop alternative methods exerting antibacterial activities against multidrug-resistant biofilm-forming bacteria. In this context, metal-based coatings with antimicrobial activities have been investigated and are currently used in the clinical practice. However, traditional coatings exhibit some drawbacks related to the insufficient adhesion to the substrate, scarce uniformity and scarce control over the toxic metal release reducing their efficacy. Here, we propose the use of antimicrobial silver-based nanostructured thin films to discourage bacterial infections. Coatings are obtained by Ionized Jet Deposition, a plasma-assisted technique that permits to manufacture films of submicrometric thickness having a nanostructured surface texture, allow tuning silver release, and avoid delamination. To mitigate interference with osseointegration, here silver composites with bone apatite and hydroxyapatite were explored. The antibacterial efficacy of silver films was tested in vitro against gram- positive and gram-negative species to determine the optimal coatings characteristics by assessing reduction of bacterial viability, adhesion to substrate, and biofilm formation. Efficacy was tested in an in vivo rabbit model, using a multidrug-resistant strain of Staphylococcus aureus showing significant reduction of the bacterial load on the silver prosthesis both when coated with the metal only (>99% reduction) and when in combination with bone apatite (>86% reduction). These studies indicate that IJD films are highly tunable and can be a promising route to overcome the main challenges in orthopedic prostheses.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 98 - 98
2 Jan 2024
Aydin MS
Full Access

Conventional 3D printing by itself is incapable of creating pores on a micro scale within deposited filaments throughout 3D scaffolds. These pores and hence larger surface areas are needed for cells to be adhered, proliferated, and differentiated. The aim of this work was to fabricate 3D polycaprolactone (PCL) scaffolds with internal multiscale porosity by using two different 3D printing techniques (ink/pellet of polymer-salt composite in low/high temperature printing) combined with salt leaching to improve cell adhesion, and cell proliferation besides to change degradation rate of PCL scaffolds:

1. Non-solvent phase separation integrated 3D printing of polymer-salt inks with various salt content (i.e., low temperature ink-based printing, LT).

2. FDM printing of composite polymer-salt pellets which will be obtained by casting and evaporating of prepared ink (i.e., high temperature composite-pellet-based printing, HT).

Further, the two approaches were followed by post salt leaching. Stem cells were able to attach on the surface and grow up to 14 days based on increasing cellular activities.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 80 - 80
2 Jan 2024
Mischler D Windolf M Gueorguiev B Varga P
Full Access

Osteosynthesis aims to maintain fracture reduction until bone healing occurs, which is not achieved in case of mechanical fixation failure. One form of failure is plastic plate bending due to overloading, occurring in up to 17% of midshaft fracture cases and often necessitating reoperation. This study aimed to replicate in-vivo conditions in a cadaveric experiment and to validate a finite element (FE) simulation to predict plastic plate bending.

Six cadaveric bones were used to replicate an established ovine tibial osteotomy model with locking plates in-vitro with two implant materials (titanium, steel) and three fracture gap sizes (30, 60, 80 mm). The constructs were tested monotonically until plastic plate deformation under axial compression. Specimen-specific FE models were created from CT images. Implant material properties were determined using uniaxial tensile testing of dog bone shaped samples. The experimental tests were replicated in the simulations. Stiffness, yield, and maximum loads were compared between the experiment and FE models.

Implant material properties (Young's modulus and yield stress) for steel and titanium were 184 GPa and 875 MPa, and 105 GPa and 761 MPa, respectively. Yield and maximum loads of constructs ranged between 469–491 N and 652–683 N, and 759–995 N and 1252–1600 N for steel and titanium fixations, respectively. FE models accurately and quantitatively correctly predicted experimental results for stiffness (R2=0.96), yield (R2=0.97), and ultimate load (R2=0.97).

FE simulations accurately predicted plastic plate bending in osteosynthesis constructs. Construct behavior was predominantly driven by the implant itself, highlighting the importance of modelling correct material properties of metal. The validated FE models could predict subject-specific load bearing capacity of osteosyntheses in vivo in preclinical or clinical studies.

Acknowledgements: This study was supported by the AO Foundation via the AOTRAUMA Network (Grant No.: AR2021_03).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 81 - 81
2 Jan 2024
Vautrin A Aw J Attenborough E Varga P
Full Access

Although 3D-printed porous dental implants may possess improved osseointegration potential, they must exhibit appropriate fatigue strength. Finite element analysis (FEA) has the potential to predict the fatigue life of implants and accelerate their development. This work aimed at developing and validating an FEA-based tool to predict the fatigue behavior of porous dental implants.

Test samples mimicking dental implants were designed as 4.5 mm-diameter cylinders with a fully porous section around bone level. Three porosity levels (50%, 60% and 70%) and two unit cell types (Schwarz Primitive (SP) and Schwarz W (SW)) were combined to generate six designs that were split between calibration (60SP, 70SP, 60SW, 70SW) and validation (50SP, 50SW) sets.

Twenty-eight samples per design were additively manufactured from titanium powder (Ti6Al4V). The samples were tested under bending compression loading (ISO 14801) monotonically (N=4/design) to determine ultimate load (Fult) (Instron 5866) and cyclically at six load levels between 50% and 10% of Fult (N=4/design/load level) (DYNA5dent). Failure force results were fitted to F/Fult = a(Nf)b (Eq1) with Nf being the number of cycles to failure, to identify parameters a and b. The endurance limit (Fe) was evaluated at Nf = 5M cycles. Finite element models were built to predict the yield load (Fyield) of each design. Combining a linear correlation between FEA-based Fyield and experimental Fult with equation Eq1 enabled FEA-based prediction of Fe.

For all designs, Fe was comprised between 10% (all four samples surviving) and 15% (at least one failure) of Fult. The FEA-based tool predicted Fe values of 11.7% and 12.0% of Fult for the validation sets of 50SP and 50SW, respectively. Thus, the developed FEA-based workflow could accurately predict endurance limit for different implant designs and therefore could be used in future to aid the development of novel porous implants.

Acknowledgements: This study was funded by EU's Horizon 2020 grant No. 953128 (I-SMarD). We gratefully acknowledge the expert advice of Prof. Philippe Zysset.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 72 - 72
2 Jan 2024
Loiselle A
Full Access

During aging, tendons demonstrate substantial disruptions in homeostasis, leading to impairments in structure-function. Impaired tendon function contributes to substantial declines quality of life during aging. Aged tendons are more likely to undergo spontaneous rupture, and the healing response following injury is impaired in aged tendons. Thus, there is a need to develop strategies to maintain tendon homeostasis and healing capacity through the lifespan. Tendon cell density sharply declines by ∼12 months of age in mice, and this low cell density is retained in geriatric tendons. Our data suggests that this decline in cellularity initiates a degenerative cascade due to insufficient production of the extracellular matrix (ECM) components needed to maintain tendon homeostasis. Thus, preventing this decline in tendon cellularity has great potential for maintaining tendon health. Single cell RNA sequencing analysis identifies two changes in the aged tendon cell environment. First, aged tendons primarily lose tenocytes that are associated with ECM biosynthesis functions. Second, the tenocytes that remain in aged tendons have disruptions in proteostasis and an increased pro-inflammatory phenotype, with these changes collectively termed ‘programmatic skewing'. To determine which of these changes drives homeostatic disruption, we developed a model of tenocyte depletion in young animals. This model decreases tendon cellularity to that of an aged tendon, including decreased biosynthetic tenocyte function, while age-related programmatic skewing is absent. Loss of biosynthetic tenocyte function in young tendons was sufficient to induce homeostatic disruption comparable to natural aging, including deficits in ECM organization, composition, and material quality, suggesting loss biosynthetic tenocytes as an initiator of tendon degeneration. In contrast, our data suggest that programmatic skewing underpins impaired healing in aged tendons. Indeed, despite similar declines in the tenocyte environment, middle-aged and young-depleted tendons mount a physiological healing response characterized by robust ECM synthesis and remodeling, while aged tendons heal with insufficient ECM.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 31 - 31
2 Jan 2024
Ernst M Windolf M Varjas V Gehweiler D Gueorguiev-Rüegg B Richards R
Full Access

In absence of available quantitative measures, the assessment of fracture healing based on clinical examination and X-rays remains a subjective matter. Lacking reliable information on the state of healing, rehabilitation is hardly individualized and mostly follows non evidence-based protocols building on common guidelines and personal experience. Measurement of fracture stiffness has been demonstrated as a valid outcome measure for the maturity of the repair tissue but so far has not found its way to clinical application outside the research space. However, with the recent technological advancements and trends towards digital health care, this seems about to change with new generations of instrumented implants – often unfortunately termed “smart implants” – being developed as medical devices.

The AO Fracture Monitor is a novel, active, implantable sensor system designed to provide an objective measure for the assessment of fracture healing progression (1). It consists of an implantable sensor that is attached to conventional locking plates and continuously measures implant load during physiological weight bearing. Data is recorded and processed in real-time on the implant, from where it is wirelessly transmitted to a cloud application via the patient's smartphone. Thus, the system allows for timely, remote and X-ray free provision of feedback upon the mechanical competence of the repair tissue to support therapeutic decision making and individualized aftercare.

The device has been developed according to medical device standards and underwent extensive verification and validation, including an in-vivo study in an ovine tibial osteotomy model, that confirmed the device's capability to depict the course of fracture healing as well as its long-term technical performance. Currently a multi-center clinical investigation is underway to demonstrate clinical safety of the novel implant system. Rendering the progression of bone fracture healing assessable, the AO Fracture Monitor carries potential to enhance today's postoperative care of fracture patients.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 19 - 19
2 Jan 2024
Li R Zheng J Smith P Chen X
Full Access

Device-associated bacterial infections are a major and costly clinical challenge. This project aimed to develop a smart new biomaterial for implants that helps to protect against infection and inflammation, promote bone growth, and is biodegradable. Gallium (Ga) doped strontium-phosphate was coated on pure Magnesium (Mg) through a chemical conversion process. Mg was distributed in a graduated manner throughout the strontium-phosphate coating GaSrPO4, with a compact structure and a Ga-rich surface. We tested this sample for its biocompatibility, effects on bone remodeling and antibacterial activities including Staphylococcus aureus, S. epidermidis and E. coli - key strains causing infection and early failure of the surgical implantations in orthopaedics and trauma.

Ga was distributed in a gradient way throughout the entire strontium-phosphate coating with a compact structure and a gallium-rich surface. The GaSrPO4 coating protected the underlying Mg from substantial degradation in minimal essential media at physiological conditions over 9 days. The liberated Ga ions from the coatings upon Mg specimens inhibited the growth of bacterial tested. The Ga dopants showed minimal interferences with the SrPO4 based coating, which boosted osteoblasts and undermined osteoclasts in in vitro co-cultures model.

The results evidenced this new material may be further translated to preclinical trial in large animal model and towards clinical trial.

Acknowledgements: Authors are grateful to the financial support from the Australian Research Council through the Linkage Scheme (ARC LP150100343). The authors acknowledge the facilities, and the scientific and technical assistance of the RMIT University and John Curtin School of Medical Research, Australian National University.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 129 - 129
2 Jan 2024
Doyle S Winrow D Aregbesola T Martin J Pernevik E Kuzmenko V Howard L Thompson K Johnson M Coleman C
Full Access

In 2021 the bone grafting market was worth €2.72 billion globally. As allograft bone has a limited supply and risk of disease transmission, the demand for synthetic grafting substitutes (BGS) continues to grow while allograft bone grafts steadily decrease. Synthetic BGS are low in mechanical strength and bioactivity, inspiring the development of novel grafting materials, a traditionally laborious and expensive process. Here a novel BGS derived from sustainably grown coral was evaluated. Coral-derived scaffolds are a natural calcium carbonate bio-ceramic, which induces osteogenesis in bone marrow mesenchymal stem cells (MSCs), the cells responsible for maintaining bone homeostasis and orchestrating fracture repair. By 3D printing MSCs in coral-laden bioinks we utilise high throughput (HT) fabrication and evaluation of osteogenesis, overcoming the limitations of traditional screening methods.

MSC and coral-laden GelXA (CELLINK) bioinks were 3D printed in square bottom 96 well plates using a CELLINK BIO X printer with pneumatic adapter Samples were non-destructively monitored during the culture period, evaluating both the sample and the culture media for metabolism (PrestoBlue), cytotoxicity (lactose dehydrogenase (LDH)) and osteogenic differentiation (alkaline phosphatase (ALP)). Endpoint, destructive assays used included qRT-PCR and SEM imaging.

The inclusion of coral in the printed bioink was biocompatable with the MSCs, as reflected by maintained metabolism and low LDH release. The inclusion of coral induced osteogenic differentiation in the MSCs as seen by ALP secretion and increased RUNX2, collagen I and osteocalcin transcription.

Sustainably grown coral was successfully incorporated into bioinks, reproducibly 3D printed, non-destructively monitored throughout culture and induced osteogenic differentiation in MSCs. This HT fabrication and monitoring workflow offers a faster, less labour-intensive system for the translation of bone substitute materials to clinic.

Acknowledgements: This work was co-funded by Enterprise Ireland and Zoan Biomed through Innovation Partnership IP20221024.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 134 - 134
2 Jan 2024
Häusner S Horas K Blunk T Herrmann M
Full Access

Autografts containing bone marrow (BM) are current gold standard in the treatment of critical size bone defects, delayed union and bone nonunion defects. Although reaching unprecedented healing rates in bone reconstruction, the mode of action and cell-cell interactions of bone marrow mononuclear cell (BM-MNC) populations have not yet been described. BM-MNCs consist of a heterogeneous mixture of hematopoetic and non-hematopoetic lineage fractions. Cell culture in a 3D environment is necessary to reflect on the complex mix of these adherend and non-adherend cells in a physiologically relevant context. Therefore, the main aim of this approach was to establish conditions for a stable 3D BM-MNC culture to assess cellular responses on fracture healing strategies.

BM samples were obtained from residual material after surgery with positive ethical vote and informed consent of the patients. BM-MNCs were isolated by density gradient centrifugation, and cellular composition was determined by flow cytometry to obtain unbiased data sets on contained cell populations. Collagen from rat tail and human fibrin was used to facilitate a 3D culture environment for the BM-MNCs over a period of three days. Effects on cellular composition that could improve the regenerative potential of BM-MNCs within the BM autograft were assessed using flow cytometry. Cell-cell-interactions were visualized using confocal microscopy over a period of 24 hours. Cell localization and interaction partners were characterized using immunofluorescence labeled paraffin sectioning.

Main BM-MNC populations like Monocytes, Macrophages, T cells and endothelial progenitor cells were determined and could be conserved in 3D culture over a period of three days. The 3D cultures will be further treated with already clinically available reagents that lead to effects even within a short-term exposure to stimulate angiogenic, osteogenic or immunomodulatory properties. These measures will help to ease the translation from “bench to bedside” into an intraoperative protocol in the end.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 29 - 29
2 Jan 2024
Bojan A Procter P Karami P Pioletti D
Full Access

The fixation of articular fractures, with many small osteochondral fragments, is a challenging unmet need where a bone adhesive would be a useful adjunct to standard treatments. Whilst there are no such adhesives in current clinical use, preclinical animal models have demonstrated good healing of bone in unloaded models using an adhesive based on phosphoserine modified calcium phosphate cement (PM-CPC). An ex-vivo human bone core model has shown that this adhesive bonds freshly harvested human bone. To confirm this adhesive is capable of supporting loaded osteochondral fragments a porcine model has been developed initially ex-vivo on the path to an in-vivo study. In this model bone cores, harvested from the medial knee condyle, are glued in place with the adhesive. In-vivo adjacent pairs of bone cores would be replaced with adhesive and a control with conventional pin fixation respectively. As osteochondral bone fragments have both bone and cartilage components, this suggested a dual adhesive strategy in which components designed for each tissue type are used. This concept has been explored in an ex-vivo porcine pilot study presented herewith. At the subchondral bone level, the PM-CPC was used. At the cartilage level, a second adhesive, a methacrylated phosphoserine containing hyaluronic acid (MePHa) hydrogel designed specifically for soft tissues was applied. This is a challenging model as both adhesives have to be used simultaneously in a wet field. The pilot showed that once the subchondral component is glued in place, the PM-CPC adhesive intruding into the cartilage gap can be removed before applying the cartilage adhesive. This enabled the MePHa adhesive to be injected between the cut cartilage edges and subsequently light-cured. This two-stage gluing method is demanding and an in-vivo pilot is necessary to perfect and prove the operative technique.

Acknowledgements: The human bone core project was partially financed by Innovation Fund of Västra Götaland Region, Sweden. The MePHa hydrogel work was supported by a Swiss National Fund grant # CR23I3_159301.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 91 - 91
2 Jan 2024
Kamalitdinov T Fujino K Jiang X Madi R Marcelin J Kuntz A Dyment N
Full Access

Despite extensive research aimed at improving surgical outcomes of enthesis injuries, re-tears remain a common problem, as the repairs often lead to fibrovascular scar as opposed to a zonal enthesis. Zonal enthesis formation involves anchoring collagen fibers, synthesizing proteoglycan-rich fibrocartilage, and mineralizing this fibrocartilage [1]. During development, the hedgehog signaling pathway promotes the formation and maturation of fibrocartilage within the zonal tendon-to-bone enthesis [1-4]. However, whether this pathway has a similar role in adult zonal tendon-to-bone repair is not known. Therefore, we developed a murine anterior cruciate ligament (ACL) reconstruction model [5] to better understand the zonal tendon-to-bone repair process and perturb key developmental regulators to determine the extent to which they can promote successful repair in the adult. In doing so, we activated the hedgehog signaling pathway both genetically using transgenic mice and pharmacologically via agonist injections. We demonstrated that both treatments improved the formation of zonal attachments and tunnel integration strength [6]. These improved outcomes were due in part to hedgehog signaling's positive role in proliferation of the bone marrow stromal cell (bMSC) progenitor pool and subsequent fibrocartilage production of bMSC progeny cells that form the attachments. These results suggest that, similar to growth and development, hedgehog signaling promotes the production and maturation of fibrocartilage during tendon-to-bone integration in adults. Lastly, we developed localized drug delivery systems to further improve the treatment of these debilitating injuries in future translational studies.

Acknowledgements: This work was supported by NIH R01AR076381, R21AR078429, R00AR067283, F31AR079840, T32AR007132, and P30AR069619, in addition to the McCabe Fund Pilot Award at the University of Pennsylvania.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 93 - 93
2 Jan 2024
Bermudez-Lekerika P Tseranidou S Kanelis E Crump K Le Maitre C Wuertz-Kozak K Alexopoulos L Noailly J Gantenbein B
Full Access

Intervertebral disc (IVD) degeneration is a pathological process often associated with chronic back pain and considered a leading cause of disability worldwide1. During degeneration, progressive structural and biochemical changes occur, leading to blood vessel and nerve ingrowth and promoting discogenic pain2. In the last decades, several cytokines have been applied to IVD cells in vitro to investigate the degenerative cascade. Particularly, IL-10 and IL-4 have been predicted as important anabolic factors in the IVD according to a regulatory network model based in silico approach3. Thus, we aim to investigate the potential presence and anabolic effect of IL-10 and IL-4 in human NP cells (in vitro) and explants (ex vivo) under hypoxia (5% O2) after a catabolic induction.

Primary human NP cells were expanded, encapsulated in 1.2% alginate beads (4 × 106 cells/ml) and cultured for two weeks in 3D for phenotype recovery while human NP explants were cultured for five days. Afterwards, both alginate and explant cultures were i) cultured for two days and subsequently treated with 10 ng/ml IL-10 or IL-4 (single treatments) or ii) stimulated with 0.1 ng/ml IL-1β for two days and subsequently treated with 10 ng/ml IL-10 or IL-4 (combined treatments).

The presence of IL-4 receptor, IL-4 and IL-10 was confirmed in human intact NP tissue (Fig 1). Additionally, IL-4 single and combined treatments induced a significant increase of proinflammatory protein secretion in vitro (Fig. 2A-C) and ex vivo (Fig. 2D and E). In contrast, no significant differences were observed in the secretome between IL-10 single and combined treatments compared to control group.

Overall, IL-4 containing treatments promote human NP cell and explant catabolism in contrast to previously reported IL-4 anti-inflammatory performance4. Thus, a possible pleiotropic effect of IL-4 could occur depending on the IVD culture and environmental condition.

Acknowledgements: This project was supported by the Marie Skłodowska Curie International Training Network “disc4all” under the grant agreement #955735.

For any figures and tables, please contact the authors directly.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 110 - 110
2 Jan 2024
Barbosa F Silva J Garrudo F Cabral J Morgado J Ferreira F
Full Access

Bone defects can result from different incidents such as acute trauma, infection or tumor resection. While in most instances bone healing can be achieved given the tissue's innate ability of self-repair, for critical-sized defects spontaneous regeneration is less likely to occur, therefore requiring surgical intervention. Current clinical procedures have failed to adequately address this issue. For this reason, bone tissue engineering (BTE) strategies involving the use of synthetic grafts for replacing damaged bone and promoting the tissue's regeneration are being investigated. The electrical stimulation (ES) of bone defects using direct current has yielded very promising results, with neo tissue formation being achieved in the target sites in vivo. Electroactive implantable scaffolds comprised by conductive biomaterials could be used to assist this kind of therapy by either directing the ES specifically to the damaged site or promoting the integration of electrodes within the bone tissue as a coating. In this study, we developed novel conductive heat-treated polyacrylonitrile/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PAN/PEDOT:PSS) nanofibers via electrospinning capable of mimicking key native features of the bone tissue's extracellular matrix (ECM) and providing a platform for the delivery of exogenous ES. The developed scaffolds were doped with sulfuric acid and mineralized in Simulated Body Fluid to mimic the inorganic phase of bone ECM. As expected, the doped PAN/PEDOT:PSS nanofibers exhibited electroconductive properties and were able to preserve their fibrous structure. The addition of PEDOT:PSS was found to improve the bioactivity of the scaffolds, with a more significant in vitro mineralization being obtained. By seeding the scaffolds with MG-63 osteoblasts and human mesenchymal stem/stromal cells, an increased cell proliferation was observed for the mineralized PAN/PEDOT:PSS nanofibers, which also registered an increased expression of key osteogenic markers (e.g Osteopontin). Our findings appear to corroborate the promising potential of the generated nanofibers for future ES-based BTE applications.

Acknowledgements: The authors thank FCT for funding through the projects InSilico4OCReg (PTDC/EME-SIS/0838/2021), BioMaterARISES (EXPL/CTM-CTM/0995/2021) and OptiBioScaffold (PTDC/EME-SIS/32554/2017, POCI-01- 0145-FEDER- 32554), the PhD scholarship (2022.10572.BD) and through institutional funding to iBB (UIDB/04565/2020 and UIDP/04565/2020), Associate Laboratory i4HB (LA/P/0140/2020) and IT (UIDB/50008/2020).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 11 - 11
2 Jan 2024
Ciardulli M Giudice V Oliva F Selleri C Maffulli N Della Porta G
Full Access

Poor tendon repair is an unsolved issue in clinical practice, due to complex tendon structure. Tendon stem/progenitor cells (TSPCs) play key roles in homeostasis, regeneration, and inflammation regulation in acute tendon injuries, and rely on TGF-β signaling for recruitment into degenerative tendons. In this study, we aimed to develop an in vitro model for tenogenesis adopting a dynamic culture of a fibrin 3D scaffold, bioengineered with human TSPCs collected from both healthy and tendinopathic surgery explants (Review Board prot./SCCE n.151, 29 October 2020). 3D culture was maintained for 21 days under perfusion provided by a custom-made bioreactor, in a medium supplemented with hTGF-β1 at 20 ng/mL. The data collected suggested that the 3D in vitro model well supported survival of both pathological and healthy cells, and that hTGF-β signaling, coupled to a dynamic environment, promoted differentiation events. However, pathological hTSPCs showed a different expression pattern of tendon-related genes throughout the culture and an impaired balance of pro-inflammatory and anti-inflammatory cytokines, compared to healthy hTSPCs, as indicated by qRT-PCT and immunofluorescence analyses. Additionally, the expression of both tenogenic and cytokine genes in hTSPCs was influenced by hTGF-β1, indicating that the environment assembled was suitable for studying tendon stem cells differentiation. The study offers insights into the use of 3D cultures of hTSPCs as an in vitro model for investigating their behavior during tenogenic events and opens perspectives for following the potential impact on resident stem cells during regeneration and healing events.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 14 - 14
2 Jan 2024
Moroni L
Full Access

Regenerative medicine (RM) promises to restore both the mechanical functionality and the biological composition of tissues after damage. Three-dimensional scaffolds are used in RM to host cells and let them produce proteins that are the building blocks of the native tissues. While regenerating tissues evolve over time through dynamic biomechanical and biochemical changes, current scaffolds’ generation are passive causing mechanical mismatch, suboptimal growth, and pain. Furthermore, current scaffolds ignore the complexity of the reciprocal bio-mechanics regulation, hindering the design of the next-gen scaffolds. To regenerate tissues and organs, biofabrication strategies that impart spatiotemporal control over cell-cell and cell-extracellular matrix communication, often through control over cell and material deposition and placement, are being developed. To achieve these targets, the spatiotemporal control over biological signals at the interface between cells and materials is often aimed for. Alternatively, biological activity can be triggered through the control of mechanical cues, harnessing more fundamental know-how in mechanobiology that could be combined with biofabrication strategies. Here, I present some of our most recent advancements in merging mechanobiology with biofabrication that enabled the control of cell activity, moving towards enhanced tissue regeneration as well as the possibility to create more complex 3D in vitro models to study biological processes.


In severe cases of total knee & hip arthroplasty, where off-the-shelf implants are not suitable (i.e., in cases with extended bone defects or periprosthetic fractures), 3D-printed custom-made knee & hip revision implants out of titanium or cobalt-chromium alloy represent one of the few remaining clinical treatment options. Design verification and validation of such custom-made implants is very challenging. Therefore, a methodology was developed to support surgeons and engineers in their decision on whether a developed design is suitable for the specific case. A novel method for the pre-clinical testing of 3D-printed custom-made knee implants has been established, which relies on the biomechanical test and finite element analysis (FEA) of a comparable clinically established reference implant. The method comprises different steps, such as identification of the main potential failure mechanism, reproduction of the biomechanical test of the reference implant via FEA, identification of the maximum value of the corresponding FEA quantity of interest at the required load level, definition of this value as the acceptance criterion for the FEA of the custom-made implant, reproduction of the biomechanical test with the custom-made implant via FEA, decision making for realization or re-design based on the acceptance criterion is fulfilled or not. Exemplary cases of custom-made knee & hip implants were evaluated with this new methodology. The FEA acceptance criterion derived from the reference implants was fulfilled in both custom-made implants and subsequent biomechanical tests verified the FEA results. The suggested method allows a quantitative evaluation of the biomechanical properties of custom-made knee & hip implant without performing physical bench testing. This represents an important contribution to achieve a sustainable patient treatment in complex revision total knee & hip arthroplasty with custom-made 3D printed implants in a safe and timely manner.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 16 - 16
2 Jan 2024
Aydin M Luciani T Mohamed-Ahmed S Yassin M Mustafa K Rashad A
Full Access

The aim of this study is to print 3D polycaprolactone (PCL) scaffolds at high and low temperature (HT/LT) combined with salt leaching to induced porosity/larger pore size and improve material degradation without compromising cellular activity of printed scaffolds. PCL solutions with sodium chloride (NaCl) particles either directly printed in LT or were casted, dried, and printed in HT followed by washing in deionized water (DI) to leach out the salt. Micro-Computed tomography (Micro-CT) and scanning electron microscope (SEM) were performed for morphological analysis. The effect of the porosity on the mechanical properties and degradation was evaluated by a tensile test and etching with NaOH, respectively. To evaluate cellular responses, human bone marrow-derived mesenchymal stem/stromal cells (hBMSCs) were cultured on the scaffolds and their viability, attachment, morphology, proliferation, and osteogenic differentiation were assessed. Micro-CT and SEM analysis showed that porosity induced by the salt leaching increased with increasing the salt content in HT, however no change was observed in LT. Structure thickness reduced with elevating NaCl content. Mass loss of scaffolds dramatically increased with elevated porosity in HT. Dog bone-shaped specimens with induced porosity exhibited higher ductility and toughness but less strength and stiffness under the tension in HT whereas they showed decrease in all mechanical properties in LT. All scaffolds showed excellent cytocompatibility. Cells were able to attach on the surface of the scaffolds and grow up to 14 days. Microscopy images of the seeded scaffolds showed substantial increase in the formation of extracellular matrix (ECM) network and elongation of the cells. The study demonstrated the ability of combining 3D printing and particulate leaching together to fabricate porous PCL scaffolds. The scaffolds were successfully printed with various salt content without negatively affecting cell responses. Printing porous thermoplastic polymer could be of great importance for temporary biocompatible implants in bone tissue engineering applications.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 17 - 17
2 Jan 2024
Ramos-Díez S Camarero-Espinosa S
Full Access

Articular cartilage is a multi-zonal tissue that coats the epiphysis of long bones and avoids its wear during motion. An unusual friction could micro-fracture this connective membrane and progress into an osteochondral defect (OD), where the affected cartilage suffers inflammation, fibrillation, and forfeiture of its anisotropic structure.

Clinical treatment for ODs has been focused on micro-fracture techniques, where the defect area is removed and small incisions are performed in the subchondral bone, which allows the exudation of mesenchymal stem cells (hMSCs) to the abraded zone. However, hMSCs represent less than 0.01% of the total cell population and are not able to self-organise coherently, so the treatments fail in the long term. To select, support and steer hMSCs from the bone marrow into a specific differentiation stage, and recreate the cartilage anisotropic microenvironment, multilayer dual-porosity 3D-printed scaffolds were developed.

Dual-porosity scaffolds were printed using prepared inks, containing specific ratios of poly-(d,l)lactide-co-caprolactone copolymer and gelatine microspheres of different diameters, which acted as sacrificial micro-pore templates and were leached after printing. The cell adhesion capability was investigated showing an increased cell number in dual-porosity scaffolds as compared to non-porous ones. To mimic the stiffness of the three cartilage zones, several patterns were designed, printed, and checked by dynamic-mechanical analysis under compression at 37 ºC. Three patterns with specific formulations were chosen as candidates to recreate the mechanical properties of the cartilage layers. Differentiation studies in the selected scaffolds showed the formation of mature cartilage by gene expression, protein deposition and biomolecular analysis. Given the obtained results, designed scaffolds were able to guide hMSC behaviour.

In conclusion, biocompatible, multilayer and dual-porosity scaffolds with cell entrapment capability were manufactured. These anisotropic scaffolds were able to recreate the physical microenvironment of the natural cartilage, which in turn stimulated cell differentiation and the formation of mature cartilage.

Acknowledgments: This work was supported by the EMAKIKER grant.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 118 - 118
2 Jan 2024
Stroobant L Verstraete M Onsem S Victor J Chevalier A
Full Access

Numerous papers present in-vivo knee kinematics data following total knee arthroplasty (TKA) from fluoroscopic testing. Comparing data is challenging given the large number of factors that potentially affect the reported kinematics. This paper aims at understanding the effect of following three different factors: implant geometry, performed activity and analysis method.

A total of 30 patients who underwent TKA were included in this study. This group was subdivided in three equal groups: each group receiving a different type of posterior stabilized total knee prosthesis. During single-plane fluoroscopic analysis, each patient performed three activities: open chain flexion extension, closed chain squatting and chair-rising. The 2D fluoroscopic data were subsequently converted to 3D implant positions and used to evaluate the tibiofemoral contact points and landmark-based kinematic parameters.

Significantly different anteroposterior translations and internal-external rotations were observed between the considered implants. In the lateral compartment, these differences only appeared after post-cam engagement. Comparing the activities, a significant more posterior position was observed for both the medial and lateral compartment in the closed chain activities during mid-flexion. A strong and significant correlation was found between the contact-points and landmarks-based analyses method. However, large individual variations were also observed, yielding a difference of up to 25% in anteroposterior position between both methods.

In conclusion, all three evaluated factors significantly affect the obtained tibiofemoral kinematics. The individual implant design significantly affects the anteroposterior tibiofemoral position, internal-external rotation and timing of post-cam engagement. Both kinematics and post-cam engagement additionally depend on the activity investigated, with a more posterior position and associated higher patella lever arm for the closed chain activities. Attention should also be paid to the considered analysis method and associated kinematics definition: analyzing the tibiofemoral contact points potentially yields significantly different results compared to a landmark-based approach.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 61 - 61
2 Jan 2024
Graziani G
Full Access

Functionalization of biomimetic nanomaterials allows to reproduce the composition of native bone, permitting better regeneration, while nanoscale surface morphologies provide cues for cell adhesion, proliferation and differentiation. Functionalization of 3D printed and bioprinted constructs, by plasma-assisted deposition of calcium phosphates-based (CaP) nanostructured coatings and by nanoparticles, respectively, will be presented. Stoichiometric and ion doped CaP- based nanocoatings, including green materials (mussel seashells and cuttlefish bone), will be introduced to guide tissue regeneration. We will show interactions between biomimetic surfaces and MSCs to address bone regeneration and SAOS-2 cells for bone tumor models. Our results show that combining AM and nanostructured biomimetic films permits to reproduce the architecture and the mechanical and compositional characteristics of bone. Stability behavior of the coatings, as well as MSCs behavior strongly depend on the starting CaP material, with more soluble CaPs and ion-doped ones showing better biological behavior. Green materials appear promising, as biomimetic films can be successfully obtained upon conversion of the marine precursors into hydroxyapatite. Last-not-least, nanoparticles-loaded scaffolds could be bioprinting without loss of cell viability, but ink characteristics depend on ion-doping as demonstrated for SAOS-2 cells over 14 days of culture. Biomimetic nanomaterials for functionalization in AM is a promising approach for bone modelling and regeneration.