header advert
Results 21 - 37 of 37
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 441 - 442
1 Nov 2011
Glaser D Dennis D Komistek R Deaderick S Mahfouz M
Full Access

In vivo kinematic analyses of total hip arthroplasty (THA) have determined femoral head separation from the medial aspect of the acetabular component can occur. Various bearing materials are currently used in THA today. The objective of this study was to determine if differences in the incidence and magnitude of femoral head separation exist among various bearing surfaces for THA during different weight-bearing activities.

205 clinically successful subjects implanted with either metal-on-metal (MOM), metalon-polyethylene (MOP), ceramic-on-ceramic (COC) or ceramic-on-polyethylene (COP) materials were analyzed using video-fluoroscopy. Each patient performed either gait on a treadmill or an abduction-adduction activity. The fluoroscopic information was then analyzed using a computer aided 3D model fitting technique to determine the incidence and magnitude of hip separation. Additional variables analyzed included femoral head diameter, follow-up duration, and type of surgical approach utilized.

Less separation was noted with increasing femoral head diameter during abductionadduction.

Increased separation was observed during gait as follow-up duration increased. Hip separation was greater during gait when a posterolateral surgical approach was used but was greater in abduction-adduction if a antero-lateral approach was selected. The incidence and magnitude of hip separation during gait was least in subjects with COC THA and least with COC and MOM THA when analyzed during abduction-adduction.

It’s been proposed that THA patients are subject to femoral head separation due to alterations in the soft tissue supporting structures during THA that affect constraint of the joint.

The current analysis demonstrates lower magnitudes and incidence of THA separation occur when hard-on-hard bearing surfaces are selected and can vary based on femoral head diameter, follow-up duration, and surgical approach used. Potential detrimental effects resulting from THA separation include premature polyethylene wear, component loosening (secondary to impulse loading conditions) and hip instability.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 466 - 466
1 Nov 2011
Pritchard E Mahfouz M
Full Access

Ligament balancing can be difficult to perfect in total knee arthoplasty (TKA), where current surgical practice is subjective and highly dependent on the individual surgeon. Proper ligament balancing contributes to postoperative stability, prosthetic alignment, and proprioception. Conversely, imbalance is linked to increased wear rates of the polyethylene component within the implant and, in turn, early surgical revision. With the end goal of quantification of joint compartmental pressures, pressure sensor arrays have been designed to quantify contact stresses within the knee during TKA.

Flexible, capacitive pressure sensors are designed as simple parallel plates, enabling a robust solid state design. Modification of cleanroom microfabrication processes enable realization of these arrays on polyimide (common in microdevices), and polyethylene (common in joint replacements). Readout circuitry implements an Analog Devices capacitance to digital chip and output is compared to direct LCR meter data. Testing verifies the highly linear response of the sensors with applied normal loads corresponding to pressure magnitudes present in passive (intraoperative) knee flexion. Spatial resolution of the arrays is 0.5 mm, with a critical dimension of 25 micrometers, allowing the magnitude and location of forces to be accurately recorded.

The MEMS pressure sensors are mounted on a tibial trial, with the body of the trial housing all circuitry. The sensors are read sequentially, and the data undergoes analog to digital conversion prior to wireless data transmission at 2.4 GHz. An Instron machine is used for compressive loading for laboratory calibration and testing. This paper outlines device fabrication, readout circuit implementation, and preliminary results.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 405 - 405
1 Nov 2011
Blumenfeld T Glaser D Bargar W Komistek R Langston G Mahfouz M
Full Access

Previous in vivo studies pertaining to THA performance have focused on the analysis of gait. Unfortunately, higher demand activities have not yet been analyzed. Therefore, the objective of the present study was to determine the in vivo kinematics for THA patients, using fluoroscopy, while they performed four higher demand activities.

The 3D in vivo kinematics of 10 THA patients were analyzed during the following activities: pivoting (PI), tying a shoe (SHOE), sitting down (SDOWN) and standing up (SUP) with and without the aid of handrails. Patients were matched for age, height, weight, body mass index, diagnosis and femoral head diameter to control for confounding variables possibly having influence on the hip performance and kinematics of the various activities.

The largest amount, incidence and variation of separation (femoral head sliding in the acetabular cup) were achieved during the PI with 1.5mm (SD 1.1) and 9 of 10 (90%) subjects experiencing separation. For the SHOE, SDOWN and SUP activities the average separation values were 1.1, 1.2 and 0.7mm, respectively. Femoral head separation was observed in 8 of 10 subjects (80%) during SHOE, in 9 (90%) during SDOWN, and in only one of 6 (60%) during SUP.

In this present study, subjects demonstrated hip separation during the high demand subjects, which could be a concern because these same activities are subjected to higher bearing surface forces. Also, the presence of hip separation leads to reduced contact area between the femoral head and the acetabular cup, possibly leading to higher contact stresses.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 450 - 450
1 Nov 2011
Mahfouz M Kuhn M
Full Access

Wireless technologies applied to the medical field have grown both in prevalence and importance in the past decade. Various applications and technologies exist underneath the telemedicine umbrella including Point-of-Care systems where electrocardiographs, blood pressure, temperature, and medical image data are recorded and transmitted wirelessly, which enables remote patient monitoring from inside hospitals, personal residences, and virtually any location with access to satellite communication. Another widespread application for wireless systems in hospitals is asset tracking, typically done with RFID technology. Wireless technologies have not been widely used in computer assisted orthopaedic surgery (CAOS) because of the limitations in terms of overall 3-D accuracy.

We have developed a wireless positioning system based on ultra wideband technology (UWB) which achieves mm-range 3-D dynamic accuracy and can be used for intraoperative tracking in CAOS systems. Current intraoperative tracking technologies include optical and electromagnetic tracking systems. The main limitations with these systems include the need for line-of-sight in optical systems and the limited view volume and susceptibility to metallic interference in electromagnetic tracking systems. UWB indoor positioning does not suffer from these effects. Until this point, the main limitation of UWB indoor positioning systems was its limitation in 3-D real-time dynamic accuracy (10–15 cm as opposed to the required 1–2 mm).

We have developed a UWB indoor positioning system which achieves dynamic 3-D accuracy in the range of 5–6 mm for a non-coherent approach and 0.5–1 mm for a coherent approach (transmitter and receiver use the same clock signal). The integration of this tracking system with smart surgical tools opens up a plethora of exciting intraoperative applications including picking landmarks, 3-D bone and instrument registration, real-time wireless pressure sensing used for ligament balancing in TKA, and real-time A-mode ultrasound bone morphing. The UWB tracking system will be presented along with its integration into smart surgical tools and surgical navigation.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 442 - 443
1 Nov 2011
Carr C Komistek R Cheng J Mahfouz M Mitchell J
Full Access

Low back pain (LBP) in the region of the lumbar spine is a significant problem among individuals, and efforts focused on treating both the symptoms and causes of LBP have proven to be difficult. Aside from conservative treatments, the predominant surgical approach for treating degenerative spine conditions has been to fuse the vertebral bodies at the symptomatic level. Even today, surgical fusion and its effect on adjacent levels are still not fully understood. Therefore, the objective of this study was to use fluoroscopy and mathematical modeling techniques to identify the in vivo kinematics and kinetics in subjects having either a normal, degenerative or fused condition of the lumbar spine.

Twenty-five subjects (ten normal, ten degenerative, and five fusion) were evaluated under fluoroscopic surveillance while performing flexion/extension of the lumbar spine. Subjects within the normal and degenerative groups were analyzed only once, while subjects from the fusion group were analyzed both pre-operatively and at a minimum of six months post-operative. The fusion group consisted of three subjects symptomatic at L4/L5, with the remaining two subjects symptomatic at L5/S1. In vivo kinematics data were derived using a 3D-to-2D model fitting algorithm and served as input into a 3D mathematical model of the lumbar spine. The parametric, inverse dynamics mathematical model was created to allow for the determination of the bearing surface contact and muscle forces at each level of the lumbar spine.

Three-dimensional kinematics analyses revealed that subjects classified as having a normal lumbar spine experienced a more uniform motion pattern compared to those observed in the degenerative and fusion groups. Alternatively, the degenerative and fusion subjects demonstrated a more coupled motion pattern in order to perform in plane flexion/extension. Compared to the normal group, rotations in the sagital plane decreased by an average of 28% at the pathological level in the degenerative group, while in the fusion group segmental motions slightly increased at the adjacent levels. Results from the mathematical model also revealed higher out-of-plane forces and increased loading at symptomatic and adjacent levels in both the degenerative and fused groups compared to forces observed in the normal spine.

The abnormal motion patterns, which result from decreased or loss of motion at pathological levels in the degenerative and fusion groups, are believed to result in higher resultant forces in the spine. This may be subjecting the intervertebral discs to increased stresses, and as a consequence may be linked to more rapid degeneration at levels where the abnormal kinematics are occurring.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 401 - 401
1 Nov 2011
Cates H Barnett R Zingde S Schmidt M Komistek R Anderle M Mahfouz M
Full Access

Previous fluoroscopic analyses of Total Hip Arthroplasty (THA) determined that the femoral head slides within the acetabular cup, leading to separation of certain aspects of the articular geometries. Although separation has been well documented, it has not been correlated to clinical complications or a more indepth understanding of the cause and effect. Surgical technique is one of the important clinical factors when considering THA procedures, and it is hypothesized, that it could affect the magnitude and occurrence of femoral head separation (sliding) in THAs. Hence, the objective of this study was to determine and compare in-vivo THA kinematics for subjects implanted with a THA using two different surgical approaches.

Thirty seven subjects, each implanted with one of two types of THA were analysed under in vivo, weight-bearing conditions using video fluoroscopy while performing a sit-to-stand activity. Ten subjects were implanted by Surgeon 1 using a long incision postero-lateral approach (G1); while a further 10 subjects were implanted by the same surgeon using a short incision posterolateral approach (G2). The remaining 17 subjects were implanted using the anterolateral approach; 10 by Surgeon 2 (G3) and seven by Surgeon 3 (G4). All patients with excellent clinical results, without pain or functional deficits were invited to participate in the study (HHS > 90). 3D kinematics of the hip joint was determined, with the help of a previously published 2D-to-3D registration technique. From a completely seated position to the standing position, four frames of the fluoroscopy video were analysed.

Subjects in all groups experienced some degree of femoral head separation at all increments of the sit-to-stand activity that were analysed. The magnitude and frequency of separation greater than 1.0mm varied between each surgeon group, between incision types, between incision lengths and between the two types of THA that were analysed. The average maximum separation was 1.3, 1.1, 1.3 and 1.4mm for G1, G2, G3 and G4 respectively. Though there was no difference in the average maximum separation values for the 4 groups, the maimum separation varied significantly. While the maximum separation in G2 was 1.8mm, the maximum separation in G4 was 3.0mm. G1 and G3 had maximum separation values of 2.3mm and 2.4mm respectively.

This study suggests that there may be a correlation between incision lengths and surgical approach with femoral head separation in THAs. The maximum separation that was seen among all groups was a subject with a traditional long incision, while the short incision group had less incidence of separation. Results from this study may give researchers and implant developers a better understanding of kinematics around the hip joint and how they vary with respect to different surgical techniques. Further analysis is being conducted on the subjects before definitive conclusions can be made.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 468 - 468
1 Nov 2011
El Dakhakhni H Mahfouz M
Full Access

An accurate geometrical three-dimensional (3D) model of human bone is required in many medical procedures including Total Knee Arthroplasty (TKA) and computer-assisted surgical navigation. Segmentation of Computed Tomography (CT) datasets is commonly used to obtain such models. However, such a method is expensive and time consuming. We herein propose a novel method for patient specific bone model reconstruction using standard x-ray fluoroscopy, a cheaper and widely available imaging alternative.

Fluoroscopic images are taken at multiple arbitrary viewpoints to provide sufficient information for bone reconstruction. The viewpoints can be obtained by either rotating the imaging source and detector or the patient’s limb of interest. The bone’s pose within the radiological scene in each of the captured images can be estimated by tracking a set of metallic calibration markers within a calibration target, rigidly attached to the limb of interest. Having acquired the required calibration data, a complex iterative scheme is executed to optimize a statistical bone atlas of the bone of interest and the relative pose between the bone and the calibration target.

In order to verify our method, we performed a cadaveric study. A set of rigidly attached fiducial markers were attached to a cadaveric leg. The leg was imaged using x-ray fluoroscopy while being rotated axially to provide us with the images required for bone model reconstruction. Distal femur and proximal tibia bone models were reconstructed from the fluoroscopy images. Furthermore, the leg was CT-scanned and segmented to provide us with the ground-truth required for reconstruction accuracy assessment. Results show the adequacy of the proposed method for surgical applications.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 401 - 401
1 Nov 2011
Johnson JM Mahfouz M
Full Access

Accurate segmentation of bone structures is an important step in surgical planning. Patient specific 3D bone models can be reconstructed using statistical atlases with submillimeter accuracy. By iteratively projecting noisy models onto the bone atlas, we can utilize the statistical variation present in the atlas to accurately segment patient specific distal femur and proximal tibia models from the CT data.

Our statistical atlas for the knee consists of 199 male distal femur models and 71 male proximal tibia models. We performed an initial registration between the average model from the atlas and the volume space before beginning the segmentation algorithm. Intensity profiles were linearly interpolated along the direction normal to the surface of the current model. The profiles were then smoothed via a low-pass filter. A point-tonearest peak gradient was calculated for each profile, and then weighted by a Gaussian window centered about the originating vertex. The flesh-to-bone edge locations are taken as the maximum of the weighted gradient. The detected locations were then projected onto the atlas using a subset of the available principal components (PC’s). The amount of variation is increased by projecting the edge locations onto a larger subset of PC’s. The process is repeated until 99.5% of the statistical variation is represented by the PC’s. Though our dataset is much larger, we initially performed bone segmentation on 5 male knee joints. The knee joint was considered to be the distal femur and proximal tibia. We used manually segmented models to determine ground truth. Initial results on the 5 knee joints (distal femur and proximal tibia) had a mean RMS error of 1.192 mm, with a minimum of 1.010 mm. Segmentation on the distal femur achieved a mean RMS error of 1.213 mm, and the results for the tibia had a mean RMS error of 1.264 mm.

Our results suggest that our atlas-based segmentation is capable of producing patient-specific 3D models with high accuracy, though patient-specific degeneration was often not well represented. To achieve more accurate patient-specific models, we must incorporate local deformations into the final model.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 443 - 443
1 Nov 2011
Leszko F Zingde S Argenson J Mahfouz M Komistek R
Full Access

Previosuly, Komistek et al. have shown that the kinematics of the patellofemoral joint is altered after a TKA surgery. Specifically the implanted patella experiences significantly less rotation than the natural patella. Also, in early flexion, the patellofemoral contact positions differed significantly between implanted and non-implanted patellae. It was also found that some of TKA subjects experience patellofemoral separation. These kinematical differences may lead to adverse mechanical conditions and increase fatigue or cause loosening of the implant components. This study’s objective was to determine the three-dimensional patellofemoral kinematics and correlate it with the in vivo sound (vibrations) detected using accelerometers for subjects having a TKA and a non-implanted knee under in vivo, weight bearing conditions. The correlation of the knee mechanical conditions with the vibration data may indicate new parameters that may be used to diagnose the condition of the articular cartilage or implant components.

Fifteen subjects (average age 71.8 ±7.4years) having one implanted knee (mobile bearing Hi-Flex PS) and the healthy contralateral knee, performed

deep knee bend to maximum flexion,

chair rise and

stair climb activities under fluoroscopic surveillance.

Three miniature, piezoelectric, three-axial accelerometers were attached to the patella and femoral epicondyle. The study was approved by the Institutional Review Board and informed consent was obtained from all subjects. The sensors detected the vibration magnitudes and frequencies of the articulating patellofemoral joint surfaces. The signals were amplified and low-pass filtered at 5 kHz by a signal conditioner. The 3D tibiofemoral and patellofemoral kinematics were derived for both knees using a previously published 3D-to-2D registration technique. The 3D bone models were recovered from CT scans, while implant models were obtained from the manufacturer. The patellofemoral rotations were described using the Grood and Suntay convention. The kinematics and sound data were synchronized and recorded under fluoroscopic surveillance, for 10 patients. Then a subset of seven subjects having a TKA was re-analyzed for their contralateral (non-implanted) knee. The vibration signal was then converted to audible sound and correlated with the 3D kinematics.

On average, the subjects achieved more flexion with their TKA (103.4°±15.9°) than with their contralateral knee (96.3°±18.3°). The patellofemoral kinematics varied between the TKA and nonimplanted patella groups; the resurfaced patella experienced less flexion, less medial rotation and less tilt than the contralateral patella. The patellar flexion results were consistent with previously reported literature for both TKA and non-implanted patellae. Also, the resurfaced patellae contacted the femur more proximally than healthy patellae. Audible signals were found for both groups of subjects. The frequency analysis demonstrated that specific frequencies were in similar range for both groups, but the magnitudes and variations were different for the TKA and contralateral knees.

This study correlated 3D patellofemoral kinematics with sound under in vivo conditions for three different activities. Variable audible signals were detected for TKA and non-implanted knees. Vibration magnitude and frequency identification, under in vivo conditions, for TKA may lead to a better understanding of wear and failure modes with respect to the patellofemoral mechanics, more specifically, the patellar insert. Currently this initial study is being expanded to degenerated knee joints and failed TKAs for possible applications of the vibration analysis to the early diagnosis of knee arthritis, detection of implant loosening or wear and monitoring of implant osteointegration progress.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 475 - 475
1 Nov 2011
Pritchard E Mahfouz M
Full Access

Force profiles across the foot yield information on abnormal kinematics and may be used to indicate pathological changes in the lower limb. However, current technology is limited to tethered systems using wired sensors. This paper outlines a wireless prototype that allows force profile measurement and through an in-shoe monitoring device utilizing custom high-accuracy sensors.

Direct measurement of the ground reaction force using a force plate is common practice for use in kinematic studies and is used as an input for mathematical models to predict forces across joints of interest during various activities. Force plates are reasonably accurate but are bulky and only allow one net force measurement at a single location and are not portable. Thus natural patient motion may be modified, intentionally or unintentionally, in order for heelstrike to occur on the force plate. In addition to force magnitude, it is useful to record force location to correlate with kinematics; abnormal kinematics will cause weight-bearing forces to shift across the foot. Current in-shoe pressure measurement devices on the market are plagued by errors up to 30% and require a cumbersome cable out of the shoe to read sensor data. By eliminating all wires, our device enables in-shoe monitoring in a research or clinical environment.

The device uses microelectromechanical system (MEMS) capacitive pressure sensors fabricated in a flexible array that attaches to a shoe insole or orthotic. The sensors are concentrated at the heel and forefoot in the prototype design and they exhibit a highly linear response to loading, eliminating the need for constant recalibration. Electronics embedded in the shoe read the entire array of 256 sensors at a rate of 60 Hz. The data is transmitted via Bluetooth at 2.4 GHz to the receiving computer for visualization and analysis. The paper assesses current technology in in-shoe sensing, outlines the device design, and reports initial stages of testing.

The prototype developed in this study shows promise for wireless monitoring of ground reaction forces for biomechanics analysis without restricting activity or impeding natural motion.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 429 - 429
1 Nov 2011
Kuhn M Mahfouz M Anderle M Komistek R Dennis D Nachtrab D
Full Access

Many nonoperative techniques exist to alleviate pain in unicompartmental osteoarthritic knees including physical therapy, heel wedges and off-loading knee braces [1]. Arthritic knee braces are particularly effective since they can be used on a regular basis at home, work, etc. Previous knee brace studies focused on their ability to stabilize anterior cruciate ligament (ACL) deficient knees. A standard technique for analyzing brace effectiveness is the use of an athrometer to look at the range-of-motion. Although this is helpful, it is more useful to use X-ray or fluoroscopy techniques to analyze the in vivo 3-D conditions of the femur and tibia. One method for doing this is Roentgen Steroephotogrammetric Analysis, which uses a calibration object and two static X-rays to perform 3-D registration of the femur and tibia. This technique is limited to static and typically non-weight bearing analysis.

We have analyzed five patients with moderate to severe osteoarthritis in both step up and step down activities with two different knee braces and also without a knee brace. Fluoroscopy of the five patients performing these activities was obtained as well as a CT scan of the knee joint for each patient. 3-D models of the femur and tibia were obtained from manual segmentation and overlaid to the fluoroscopy images using a novel 3-D to 2-D registration method [2]. This allowed analysis of 3-D in vivo weight bearing conditions. This work builds off of an analysis where 15 patients were analyzed in vivo during gait with and without knee braces [3].

All five patients experienced substantially less pain when performing the step up and step down activities with a knee brace versus without a knee brace. It should be noted that none of the five patients were obese, which can limit brace effectiveness. Preliminary results show that medial condyle separation was increased by 1.4–1.6 mm when using a knee brace versus not using a knee brace during the heel-strike and 33% phases of step up and step down activities. Also, the condylar separation angle was reduced by an average of 1.5–2.5°. Finally, consistently less condylar separation was seen during step down versus step up activities (0.5–1 mm), which can be attributed to a greater initial impact force on the knee joint during step down versus step up activities.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 451 - 451
1 Nov 2011
Leszko F Hovinga K Mahfouz M Lerner A Anderle M Komistek R
Full Access

Previous in vivo studies have not documented if ethnicity or gender influence knee kinematics for the healthy knee joint. Other measurements, such as hip-knee-ankle alignment have been previously shown to be significantly different between females and males, as well as Japanese and Caucasian populations in the young healthy knee [1]. Differences in knee kinematics in high flexion positions may relate to both etiology of osteoarthritis and success in knee replacement designs. Although differences in knee anatomy have been identified, their significance in knee function has not yet been clarified. Therefore, the objective of this study was to determine the 3D, in vivo normal knee kinematics for various subjects from different gender and ethnic backgrounds, and to identify significant differences, if any, between populations.

The 3D, in vivo, weight bearing normal knee kinematics was determined for 79 healthy subjects, including 48 Caucasians, 24 Japanese, 42 males, and 37 females. Each participant performed deep knee bend activity from a standing (full extension) to squatting to a lunge motion, until maximum knee flexion was reached. The study was approved by the Institutional Review Board and informed consent form was obtained from all subjects. The 3D bone models, created by segmentation from MR images, were used to recreate the 3D knee kinematics using the previously described fluoroscopic and 3D-to-2D registration techniques (Fig. 1) [2,3]. Tibiofemoral rotations were described using the ISB recommended Grood and Suntay convention [4,5]. Anterior-posterior translations of the centers of the posterior femoral condyles were normalized due to significantly different anthropometry in the subjects. Anterior cruciate ligament (ACL) laxity was also measured using a KT-1000 device for 72 of these subjects. Statistical analysis was performed using the Student’s t-test, set at the 95% confidence interval.

Most subjects achieved very high flexion, however substantial variability occurred in all groups. Range of motion (ROM) varied from 117° to 177°, while average external rotation was 31°± 9.9° for all subjects. Japanese and female subjects achieved greater ROM than Caucasian (p=0.048) and male (p=0.014) subjects. From full extension to 140° of flexion (which 87% of subjects achieved), few significant differences between any of the populations were observed. At deeper flexion, the external rotation was higher for female than for male subjects, however not statistically significant (p=0.0564 at 155°). Also at deep flexion, the adduction was significantly higher for female subjects. The translations of the lateral condyle were very similar between respective groups, but at deep flexion, the medial condyle remained significantly more anterior for females, leading to greater axial rotation and ROM. As ACL laxity increased, flexion/extension ROM significantly increased (r2=0.184, p< 0.001). In addition, ACL laxity was also higher for females (6.8 mm) compared to males (5.6 mm, p=0.011), as well as Japanese (7.5 mm) compared to Caucasian (5.6 mm, p=0.0002) subjects.

High variability and ROM in knee kinematics were similar to those seen in previous studies of healthy subjects during a deep knee bending activity [6]. Subjects in this study achieved much greater axial rotation and ROM than previously analyzed TKA patients. A relationship was found between greater axial rotation and increased ROM, and may be related in part to increased ACL laxity in the knee. Significant differences in ROM and laxity were identified between genders and ethnic groups. Also the medial condyle remaining significantly more anterior for females than for males in deep flexion may explain higher external rotation and consequently higher flexion experienced by women. However, understanding the causes for variability within each group may be the key to improved implant design.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 475 - 475
1 Nov 2011
To G Mahfouz M
Full Access

Body motion tracking for kinematic study is typically done with optical sensors. The user wears markers and the cameras track them to compute the transformation of the motion frame by frame. This method requires a set up of multiple motion capturing cameras and it can only be done within the specific area. The goal of this project is to create a tracking unit that does not require expensive overhead and can be done in any location.

The advancement in micro-machined microelectromechanical system (MEMS) sensors such as accelerometer, gyroscope and magnetometers can be used for human motion tracking.

The unit is attached to a body segment or an external housing unit such as a knee brace. The orientation of the unit can be calculated based on the data from all 3 of the sensors. A complementary filter is used to fuse the data together to generate a single Euler angle matrix.

Relative motion between the joint can be calculated from the output of 2 of the measuring units.

The sensors are calibrated with an average static orientation error of +/−0.7 degree and standard deviation of 1.8 degrees. The dynamic orientation error of rotating around a single axis is 2.38, 0.15 and 0.517 degrees with standard deviation of 0.99, 0.98 and 0.7 degree for roll, pitch and yaw respectively.

The initial design shows good result for human body motion tracking. The performance of the unit can be further improved with optimizing the filter and using the data from different type of the sensors to compensate each other.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 359 - 359
1 May 2010
Parratte S Mahfouz M Booth R Argenson J
Full Access

Introduction: morphological analysis of the general shape of the bones and of their particular variations according to the patient age, gender and pathology is an important step to improve the orthopedic management. We aimed to performed a gender specific analysis of the bi and tridimensional anatomy of the distal femur in vitro and in vivo.

Materials and Methods: in vitro data were obtained from CT-scan performed on 92 dry men femurs and 52 dry women femurs. Using a manual contouring method and a segmentation method, tridimensional reconstructions were obtained and according to two different algorithms, the regions of discrepancies between men and women were determined. An automatic calculation of 59 defined measurements was then performed. In vivo data providing from 59 CT-scans of men femur and 73 CT-scan of women femurs were acquired. Standardized bidimensional measurements at the level of the trochlear cut were performed.

Results: in vivo, statistically significant differences were observed for the: medio-lateral distance (M-Ld women=7.4±0.4cm vs M-Ld men=8.4±0.5cm; p< 0.0001), anteroposterior distance (A-Pd women=5.9±0,4cm vs A-Pd men= 6.4±0.4cm; p< 0.0001) and for the ratio anterior-posterior distance/medio-lateral distance (p< 0.0001). The trochlear groove angle was comparable in the two groups. In vitro, the tridimensional shape of the distal femur was more trapezoidal in women than in men. Medio-lateral distances were also statistically greater in men than in women (p< 0.01), the ratio anterior-posterior distance/medio-lateral distance was also statistically greater in men than in women (p< 0.01) and the Q angle more open in women than in men (p< 0.01).

Discussion: Three types of differences between men and women were observed in this gender specific evaluation of the distal femur anatomy. First, for a same anteroposterior distance, the medio-lateral distance was smaller in women. Second, the global shape of the distal femur was more trapezoidal in women and third the Q angle was more open in women. This gender specific anatomy should be clinically considered when performing total knee arthroplasty in women and gender specific implants may be required.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 73 - 73
1 Mar 2009
Gustke K Mahfouz M
Full Access

Frequently surgeons performing total knee replacements are faced with the dilemma of whether to notch the anterior cortex or overhang the medial and/or lateral cortices when implanting the femoral component. This is almost always seen in female patients. There is also a higher incidence of patellar alignment problems in female patients post total knee replacement. A unique 3D to 3D matching study of 202 cadaveric femurs has demonstrated a significant difference in the average comparable shapes of male versus female distal femoral anatomy. For the same AP dimension, female distal femurs are more than 5mm narrower. Also the angle formed between the anterior condyles and the posterior condyles are significantly different with the female being more trapezoidal in shape.

Most existing total knee femoral component designs follow the ratio similar to that found in the average male distal femur. Options for management of this gender variability have been either utilizing instrumentation that references the anterior cortex to avoid notching or placing additional flexion on the distal femoral cut to allow downsizing. Both techniques are potentially problematic. Total knee implants systems are now utilizing this anthropomorphic data to redesign for separate male and female femoral components taking into consideration the relatively narrower female distal condylar width, lower medial anterior femoral condyle, and greater patellofemoral Q-angle.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 111 - 111
1 Mar 2006
Argenson J Komistek R Mahfouz M Walker S Aubaniac J Dennis D
Full Access

Introduction: Deep flexion may affect both femorotibial contact pattern and patellofemoral interface. The objective of this study was to conduct the first in vivo kinematic analysis that determines the 3D motions of the femorotibial and patellofemoral joints, simultaneously from full extension into deep flexion.

Methods: Three-dimensional femorotibial and patello-femoral kinematics were evaluated during a deep knee bend using fluoroscopy for five subjects having a normal knee, five having an ACL-deficient knee and 20 subjects having a TKA designed for deep flexion.

Results: The average weight-bearing range-of-motion was 125 degrees, significantly higher than in previous studies. On average, subjects experienced 4.9o of normal axial rotation and only three subjects experienced an opposite rotation pattern. On average, subjects experienced −9.7 mm of posterior femoral rollback (PFR) and all subjects experienced at least −4.4 mm of PFR. These subjects experienced less patellofemoral translation than the normal knee, but the average motion was similar in pattern to the normal knee. On average, the subjects having a TKA experienced patella tilt angles that were similar to the normal knee.

Discussion: It is assumed that femorotibial kinematics can play a major role in patellofemoral kinematics. Altering the patella motion and/or the patellar ligament rotation could lead to much higher forces at the patel-lofemoral interface. In this study, these subjects experienced kinematic patterns that were very similar to the normal knee and it can be deducted that forces acting on the patella were not significantly increased for TKA subjects compared with the normal subjects.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 407 - 407
1 Apr 2004
Komistek R Dennis D Mahfouz M Hoff W Haas B Anderson D
Full Access

Introduction: Understanding the in vivo motions of human joints has become increasingly important. Researchers have used in vitro (cadavers), non-invasive (gait labs), and in vivo (RSA, fluoroscopy) approaches to assess human knee motion. The objective of this study was to use fluoroscopy and computer tomography (CT) to accurately determine the 3D, in vivo, weight-bearing kinematics of normal knees.

Methods: Five normal knees clinically assessed as having no pain or ligamentous laxity were analyzed. Using CT scanning, slices were obtained six inches proximal to the joint line on the femur and six inches of the proximal tibia. Three-dimensional CAD models of each subject’s femur, tibia and patella were recreated from the 3D bone density data. Each subject was then asked to perform five weight-bearing activities while under fluoroscopic surveillance: (1) deep knee bend, (2) normal gait, (3) chair rise, (4) chair sit, and (5) stair descent. The computer-generated 3D models of each subject’s femur and tibiaon (> 1