header advert
Results 21 - 40 of 736
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 68 - 68
7 Aug 2023
Ball S Jones M Pinheiro VH Church S Williams A
Full Access

Abstract

Introduction

The aim of this study was to determine if elite athletes could return to professional sport after MCL or PLC reconstruction using LARS ligaments and to demonstrate the safety and efficacy of LARS by reporting sport longevity, subsequent surgeries and complications.

Methods

A retrospective review of all extra-articular knee ligament reconstructions in elite athletes utilising LARS ligaments by 3 knee surgeons between January 2013 and October 2020 was undertaken. Return to play (RTP) was defined as competing at professional level or national/ international level in amateur sport.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 73 - 73
7 Aug 2023
Shatrov J Jones M Ball S Williams A
Full Access

Abstract

Introduction

The aim of this study was to determine the factors affecting return to sport (RTS) and career longevity of elite athletes after microfracture of the knee.

Methods

A retrospective review of a consecutive series of elite athletes with chondral injuries in the knee treated with microfracture was undertaken. RTS was defined as competing in at least one event at professional level or national/ international level in amateur sport. Demographic, pre, intra and post operative factors affecting RTS were analysed.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 43 - 43
7 Aug 2023
Lewis A Bucknall K Davies A Evans A Jones L Triscott J Hutchison A
Full Access

Abstract

Introduction

A lipohaemarthrosis seen on Horizontal beam lateral X-ray in acute knee injury is often considered predictive of an intra-articular fracture requiring further urgent imaging.

Methodology

We retrospectively searched a five-year X-ray database for the term “lipohaemarthrosis”. We excluded cases if the report concluded “no lipohaemarthrosis” or “lipohaemarthrosis” AND “fracture”. All remaining cases were reviewed by an Orthopaedic Consultant with a special interest in knee injuries (AD) blinded to the report. X-rays were excluded if a fracture was seen, established osteoarthritic change was present, a pre-existing arthroplasty present or no lipohaemarthrosis present. Remaining cases were then studied for any subsequent Radiological or Orthopaedic surgical procedures.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 65 - 65
7 Aug 2023
Jones M Pinheiro VH Balendra G Borque K Williams A
Full Access

Abstract

Introduction

The study aims were to demonstrate rates, level, and time taken to RTP in elite sports after ACL reconstruction (ACL-R) and compare football and rugby.

Methods

A retrospective review of a consecutive series of ACL-R between 2005 and 2019 was undertaken. Patients were included if they were elite athletes and were a minimum of 2 years post primary autograft ACL-R. The outcomes measured were return to play (RTP), (defined as participation in a professional match or in national/ international level amateur competition), time to RTP after surgery, and RTP level (Tegner score).


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 23 - 23
7 Aug 2023
Wehbe J Womersley A Jones S Afzal I Kader D Sochart D Asopa V
Full Access

Abstract

Introduction

30-day emergency readmission is an indicator of treatment related complication once discharged, resulting in readmission. A board-approved quality improvement pathway was introduced to reduce elective re-admissions.

Method

The pathway involved telephone and email contact details provision to patients for any non-life threatening medical assistance, allowing for initial nurse led management of all issues. A new clinic room available 7 days, and same day ultrasound scanning for DVT studies were introduced. A capability, opportunity and behavior model of change was implemented.

Readmission rates before and six months after implementation were collected from Model Hospital. A database used to document patient communications was interrogated for patient outcomes.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 82 - 82
7 Aug 2023
Jones R Phillips J Panteli M
Full Access

Abstract

Introduction

Total joint arthroplasty (TJA) is one of the commonest and most successful orthopaedic procedures, used for the management of end-stage arthritis. With the recent introduction of robotic assisted joint replacement, Computed Tomography (CT) has become part of required pre-operative planning.

The aim of this study is to quantify and characterise incidental CT findings, their clinical significance, and their effect on planned joint arthroplasty.

Methodology

All consecutive patients undergoing an elective TJR (hip or knee arthroplasty) were retrospectively identified, over a 3-year period (December 2019 and December 2022). Data documented and analysed included patient demographics, type of joint arthroplasty, CT findings, their clinical significance, as well as potential delays to the planned arthroplasty because of these findings and subsequent further investigation.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 67 - 67
7 Aug 2023
Jones M Pinheiro VH Laughlin M Bourque K Williams A
Full Access

Abstract

Introduction

The aim of this study was to determine which factors affect a professional footballer's return to play performance level after ACL reconstruction (ACL-R). Additionally, to report their playing performance at 2 and 5 years post ACL-R compared to their preinjury performance.

Methods

A retrospective review of a consecutive series of primary ACL-R undertaken in professional footballers between 2005 and 2019 was undertaken. Performance was determined by the number of minutes played and the league level compared to their pre-injury baseline. Playing time (minutes) was classified as same (within 20%), more, or less playing time for each season compared to the one year prior to surgery.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 24 - 24
23 Jun 2023
Byrd JWT Jones KS Bardowski EA
Full Access

Partial thickness abductor tendon tears are a significant source of recalcitrant laterally based hip pain. For those that fail conservative treatment, the results of endoscopic repair are highly successful with minimal morbidity. The principal burden is the protracted rehabilitation that is necessary as part of the recovery process. There is a wide gap between failed conservative treatment and successful surgical repair. It is hypothesized that a non-repair surgical strategy, such as a bioinducitve patch, could significantly reduce the burden associated recovery from a formal repair. Thus, the purpose of this study is to report the preliminary results of this treatment strategy.

Symptomatic partial thickness abductor tendon tears are treated conservatively, including activity modification, supervised physical therapy and ultrasound guided corticosteroid injections. Beginning in January 2022, patients undergoing hip arthroscopy for intraarticular pathology who also had persistently symptomatic partial thickness abductor tendon tears, were treated with adjunct placement of a bioinducitve (Regeneten) patch over the tendon lesion from the peritrochanteric space. The postop rehab protocol is dictated by the intraarticular procedure performed. All patients are prospectively assessed with a modified Harris Hip Score (mHHS) and iHOT and the tendon healing response examined by ultrasound.

Early outcomes will be presented on nine consecutive cases.

Conclusions - Will be summarized based on the preliminary outcomes to be reported.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 1 - 1
23 Jun 2023
Parker J Horner M Jones SA
Full Access

Contemporary acetabular reconstruction in major acetabular bone loss often involves the use of porous metal augments, a cup-cage construct or custom implant. The aims of this study were: To determine the reproducibility of a reconstruction algorithm in major acetabular bone loss. To determine the subsequent success of reconstruction performed in terms of re-operation, all-cause revision and Oxford Hip Score (OHS) and to further define the indications for custom implants in major acetabular bone loss.

Consecutive series of Paprosky Type III defects treated according to a reconstruction algorithm. IIIA defects were planned to use a superior augment and hemispherical cup.

IIIB defects were planned to receive either augment and cup, cup-cage or custom implant.

105 procedures in cohort 100 patients (5 bilateral) with mean age 73 years (42–94).

IIIA defects (50 cases) − 72.0% (95%CI 57.6–82.1) required a porous metal augment the remainder treated with a hemispherical cup alone. IIIB defects (55 cases) 71.7% (95%CI 57.6–82.1) required either augments or cup-cage. 20 patients required a hemispherical cup alone and 6 patients received a custom-made implant.

Mean follow up of 7.6 years. 6 re-revisions were required (4 PJI, 2 peri-prosthetic fractures & 1 recurrent instability) with overall survivorship of 94.3% (95% CI 97.4–88.1) for all cause revision. Single event dislocations occurred in 3 other patients so overall dislocation rate 3.8%. Mean pre-op OHS 13.8 and mean follow-up OHS 29.8.

Custom implants were used in: Mega-defects where AP diameter >80mm, complex discontinuity and massive bone loss in a small pelvis (i.e., unable to perform cup-cage)

A reconstruction algorithm can >70% successfully predict revision construct which thereafter is durable with a low risk of re-operation. Jumbo cup utilized <1/3 of cases when morphology allowed. The use of custom implants has been well defined in this series and accounts for <5% of cases.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 33 - 33
7 Jun 2023
Jones S Raj S Magan A
Full Access

Dual mobility (DM) is most often used by surgeons to reduce instability in high risk patients. NJR data on DM has not demonstrated a reduction in all cause revision and has reported an increase in revision for peri-prosthetic fracture (PPF). The aim of our study was:

Report outcome of DM used in high-risk patients including non-revision re-operations (dislocation & PPF).

Comparison with conventional bearing THA (cTHA) with local, national and NJR benchmarking data.

Retrospective cohort assessment of falls risk for patients receiving DM.

Prospective F/U of a DM implant since 2016 and enrolled into Beyond Compliance (BC). Primary outcome measure all-cause revision with secondary outcome including any re-operation and Oxford Hip Score (OHS). All patients were risk stratified and considered high risk for instability. Complications were identified via hospital records, clinical coding linkage, NJR and BC. Benchmarking data for comparison was obtained from same data sources we also considered all B type PPF that occurred with cemented polished taper stem (PTS).

159 implants in 154 patients with a mean age 74.0 years and a maximum F/U of 6.7 years. Survivorship for all-cause revision 99.4% (95% CI 96.2–99.8). One femoral only revision. Mean gain in OHS 27.4. Dislocation rate 0.6% with a single event. Patients with a PTS rate of Type B PPF 2.1% requiring revision/fixation. Compared to cTHA this cohort was significantly older (74.0 vs 68.3 years), more co-morbidity (ASA 3 46.5% vs 14.4%) and more non-OA indications (32.4% vs 8.5%). Relative risks for dislocation 0.57 (95%CI 0.08–4.1) and PPF 1.75 (95%CI 0.54–5.72). Every patient had at least one risk factor for falling and >50% of cohort had 4 or more risk factors using NICE tool.

The selective use of DM in high-risk patients can reduce the burden of instability. These individuals are very different to the “average” THA patient. A “perfect storm” is created using a high-risk implant combination (DM & PTS) in high-risk falls risk population. This re-enforces the need to consider all patient and implant factors when deciding bearing selection.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 47 - 47
7 Jun 2023
Malik-Tabassum K Ahmed M Jones HW Gill K Board T Gambhir A
Full Access

Musculoskeletal disorders have been recognised as common occupational risks for all orthopaedic surgeons. The nature of tasks performed by hip surgeons often requires both forceful and repetitive manoeuvres, potentially putting them at higher risk of musculoskeletal injuries compared to other orthopaedic sub-specialities. This study aimed to investigate the prevalence of musculoskeletal conditions among hip surgeons and evaluate the association between their workplace and lifestyle factors and musculoskeletal health.

An online questionnaire consisting of 22 questions was distributed to UK-based consultant hip surgeons via email and social media platforms. This survey was completed by 105 hip surgeons.

The mean age of the respondents was 49 years (range 35–69), with an average of 12 years (range 1–33) in service. 94% were full-time and 6% worked part-time. 49% worked at a district general hospital, 49% at a tertiary centre and 4% at a private institution. 80% were on the on-call rota and 69% had additional trauma commitments. 91% reported having one or more, 50% with three or more and 13% with five or more musculoskeletal conditions. 64% attributed their musculoskeletal condition to their profession. The most common musculoskeletal conditions were base of thumb arthritis (22%), subacromial impingement (20%), degenerative lumbar spine (18%) and medial or lateral epicondylitis (18%). 60% stated that they experienced lower back pain. Statistical analysis showed that being on the on-call rota was significantly (P<0.001) associated with a higher musculoskeletal burden. Regular resistance and/or endurance training and BMI<30 were statistically significant protective factors (P<0.001).

Over the last few decades, most of the hip-related literature has focused on improving outcomes in patients, yet very little is known about the impact of hip surgery on the musculoskeletal health of hip surgeons. This study highlights a high prevalence of musculoskeletal conditions among UK-based hip surgeons. Hip surgeons have a pivotal role to play in the ongoing recovery of elective orthopaedics services. There is a pressing need for the identification of preventative measures and improvement in the surgical environment of our hip surgeons.


Bone & Joint Open
Vol. 4, Issue 5 | Pages 378 - 384
23 May 2023
Jones CS Eardley WGP Johansen A Inman DS Evans JT

Aims

The aim of this study was to describe services available to patients with periprosthetic femoral fracture (PPFF) in England and Wales, with focus on variation between centres and areas for care improvement.

Methods

This work used data freely available from the National Hip Fracture Database (NHFD) facilities survey in 2021, which asked 21 questions about the care of patients with PPFFs, and nine relating to clinical decision-making around a hypothetical case.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 69 - 69
17 Apr 2023
Day G Jones A Mengoni M Wilcox R
Full Access

Autologous osteochondral grafting has demonstrated positive outcomes for treating articular cartilage defects by replacing the damaged region with a cylindrical graft consisting of bone with a layer of cartilage, taken from a non-loadbearing region of the knee. Despite positive clinical use, factors that cause graft subsidence or poor integration are relatively unknown. The aim of this study was to develop finite element (FE) models of osteochondral grafts within a tibiofemoral joint and to investigate parameters affecting osteochondral graft stability.

Initial experimental tests on cadaveric femurs were performed to calibrate the bone properties and graft-bone frictional forces for use in corresponding FE models, generated from µCT scan data. The effects of cartilage defects and osteochondral graft repair were measured by examining contact pressure changes using in vitro tests on a single cadaveric human tibiofemoral joint. Six defects were created in the femoral condyles which were subsequently treated with osteochondral autografts or metal pins. Matching µCT scan-based FE models were created, and the contact patches were compared. Sensitivity to graft bone properties was investigated.

The bone material properties and graft-bone frictional forces were successfully calibrated from the initial tests with good resulting levels of agreement (CCC=0.87). The tibiofemoral joint experiment provided a range of cases to model. These cases were well captured experimentally and represented accurately in the FE models. Graft properties relative to host bone had large effects on immediate graft stability despite limited changes to resultant cartilage contact pressure.

Model confidence was built through extensive validation and sensitivity testing, and demonstrated that specimen-specific properties were required to accurately represent graft behaviour. The results indicate that graft bone properties affect the immediate stability, which is important for the selection of allografts and design of future synthetic grafts.

Acknowledgements

Supported by the EPSRC-EP/P001076.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 24 - 24
17 Apr 2023
Cooper N Etchels L Lancaster-Jones O Williams S Wilcox R
Full Access

Non-optimal clinical alignment of components in total hip replacements (THRs) may lead to edge loading of the acetabular cup liner. This has the potential to cause changes to the liner rim not accounted for in standard wear models. A greater understanding of the material behaviours could be beneficial to design and surgical guidance for THR devices. The aim of this research was to combine finite element (FE) modelling and experimental simulation with microstructural assessment to examine material behaviour changes during edge loading.

A dynamic deformable FE model, matching the experimental conditions, was created to simulate the stress strain environment within liners. Five liners were tested for 4Mc (million cycles) of standard loading (ISO14242:1) followed by 3Mc of edge loading with dynamic separation (ISO14242:4) in a hip simulator. Microstructural measurements by Raman spectroscopy were taken at unloaded and highly loaded rim locations informed by FE results. Gravimetric and geometric measurements were taken every 1Mc cycles.

Under edge loading, peak Mises stress and plastic deformation occur below the surface of the rim during heel strike. After 7Mc, microstructural analysis determined edge loaded regions had an increased crystalline mass fraction compared to unloaded regions (p<0.05). Gravimetric wear rates of 12.5mm3/Mc and 22.3mm3/Mc were measured for standard and edge loading respectively. A liner penetration of 0.37mm was measured after 7Mc.

Edge loading led to an increase in gravimetric wear rate indicating a different wear mechanism is occurring. FE and Raman results suggest that changes to material behaviour at the rim could be possible. These methods will now be used to assess more liners and over a larger number of cycles. They have potential to explore the impact of edge loading on different surgical and patient variables.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 59 - 59
17 Apr 2023
Pounds G Liu A Jones A Jennings L
Full Access

The aim of this work was to develop a novel, accessible and low-cost method, which is sufficient to measure changes in meniscal position in a whole-knee joint model performing dynamic motion in a knee simulator.

An optical tracking method using motion markers, MATLAB (MATLAB, The MathWorks Inc.) and a miniature camera system (Raspberry Pi, UK) was developed. Method feasibility was assessed on porcine whole joint knee samples (n = 4) dissected and cemented to be used in the simulator (1). Markers were placed on three regions (medial, posterior, anterior) of the medial meniscus with corresponding reference markers on the tibial plateau, so the relative meniscal position could be calculated. The Leeds high kinematics gait profile scaled to the parameters of a pig (1, 2) was driven in displacement control at 0.5 Hz. Videos were recorded at cycle-3 and cycle-50. Conditions tested were the capsule retained (intact), capsule removed and a medial posterior root tear. Mean relative displacement values were taken at time-points relating to the peaks of the axial force and flexion-extension gait inputs, as well as the range between the maximum and minimum values. A one-way ANOVA followed by Tukey post hoc analysis were used to assess differences (p = 0.05).

The method was able to measure relative meniscal displacement for all three meniscal regions. The medial region showed the greatest difference between the conditions. A significant increase (p < 0.05) for the root tear condition was found at 0.28s and 0.90s (axial load peaks) during cycle-3. Mean relative displacement for the root tear condition decreased by 0.29 mm between cycle-3 and cycle-50 at the 0.28s time-point. No statistically significant differences were found when ranges were compared at cycle-3 and cycle-50.

The method was sensitive to measure a substantial difference in medial-lateral relative displacement between an intact and a torn state. Meniscus extrusion was detected for the root tear condition throughout test duration. Further work will progress onto human specimens and apply an intervention condition.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 35 - 35
17 Apr 2023
Afzal T Jones A Williams S
Full Access

Cam-type femoroacetabular impingement is caused by bone excess on the femoral neck abutting the acetabular rim. This can cause cartilage and labral damage due to increased contact pressure as the cam moves into the acetabulum. However, the damage mechanism and the influence of individual mechanical factors (such as sliding distance) are poorly understood. The aim of this study was to identify the cam sliding distance during impingement for different activities in the hip joint.

Motion data for 12 different motion activities from 18 subjects, were applied to a hip shape model (selected as most likely to cause damage, anteriorly positioned with a maximum alpha angle of 80°). The model comprised of a pointwise representation of the acetabular rim and points on the femoral head and neck where the shape deviated from a sphere (software:Matlab).

The movement of each femoral point was tracked in 3D while an activity motion was applied, and impingement recorded when overlap between a cam point and the acetabular rim occurred. Sliding distance was recorded during impingement for each relevant femoral point.

Angular sliding distances varied for different activities. The highest mean (±SD) sliding distance was for leg-crossing (42.62±17.96mm) and lowest the trailing hip in golf swing (2.17±1.11mm). The high standard deviation in the leg crossing sliding distances, indicates subjects may perform this activity in a different manner.

This study quantified sliding distance during cam impingement for different activities. This is an important parameter for determining how much the hip moves during activities that may cause damage and will provide information for future experimental studies.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 144 - 144
11 Apr 2023
Lineham B Altaie A Harwood P McGonagle D Pandit H Jones E
Full Access

Multiple biochemical biomarkers have been previously investigated for the diagnosis, prognosis and response to treatment of articular cartilage damage, including osteoarthritis (OA). Synovial fluid (SF) biomarker measurement is a potential method to predict treatment response and effectiveness. However, the significance of different biomarkers and their correlation to clinical outcomes remains unclear. This systematic review evaluated current SF biomarkers used in investigation of cartilage degeneration or regeneration in the knee joint and correlated these biomarkers with clinical outcomes following cartilage repair or regeneration interventions.

PubMed, Institute of Science Index, Scopus, Cochrane Central Register of Controlled Trials, and Embase databases were searched. Studies evaluating SF biomarkers and clinical outcomes following cartilage repair intervention were included. Two researchers independently performed data extraction and QUADAS-2 analysis. Biomarker inclusion, change following intervention and correlation with clinical outcome was compared.

9 studies were included. Study heterogeneity precluded meta-analysis. There was significant variation in sampling and analysis. 33 biomarkers were evaluated in addition to microRNA and catabolic/anabolic ratios. Five studies reported on correlation of biomarkers with six biomarkers significantly correlated with clinical outcomes following intervention. However, correlation was only demonstrated in isolated studies.

This review demonstrates significant difficulties in drawing conclusions regarding the importance of SF biomarkers based on the available literature. Improved standardisation for collection and analysis of SF samples is required. Future publications should also focus on clinical outcome scores and seek to correlate biomarkers with progression to further understand the significance of identified markers in a clinical context.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 74 - 74
11 Apr 2023
Gilbert S Jones R White P Mason D
Full Access

Stimulation of the mechanosensitive ion channel, Piezo1 promotes bone anabolism and SNPs in the Piezo1 locus are associated with changes in fracture risk. Osteocytes function as critical regulators of bone homeostasis by sensing mechanical signals. The current study used a human, cell-based physiological, 3D in vitro model of bone to determine whether loading of osteocytes in vitro results in upregulation of the Piezo1 pathway.

Human Y201 MSCs, embedded in type I collagen gels and differentiated to osteocytes for 7-days, were subjected to pathophysiological load (5000 µstrain, 10Hz, 5 mins; n=6) with unloaded cells as controls (n=4). RNA was extracted 1-hr post load and assessed by RNAseq analysis. To mimic mechanical load and activate Piezo1, cells were differentiated to osteocytes for 13 days and treated ± Yoda1 (5µM, 2- and 24-hs, n=4); vehicle treated cells served as controls (n=4). RNA was subjected to RT-qPCR and data normalised to the housekeeping gene, YWHAZ. Media was analysed for IL6 release by ELISA.

Mechanical load upregulated Piezo1 gene expression (16.5-fold, p<0.001) and expression of the transcription factor NFATc1, and matricellular protein CYR61, known regulators of Piezo1 mechanotransduction (3-fold; p= 5.0E-5 and 6.8-fold; p= 6.0E-5, respectively). After 2-hrs, Yoda1 increased the expression of the early mechanical response gene, cFOS (11-fold; p=0.021), mean Piezo1 expression (2.3-fold) and IL-6 expression (103-fold, p<0.001). Yoda1 increased the release of IL6 protein after 24 hours (7.5-fold, p=0.001).

This study confirms Piezo1 as an important mechanosensor in osteocytes. Piezo1 activation mediated an increase in IL6, a cytokine that drives inflammation and bone resorption providing a direct link between mechanical activation of Piezo1, bone remodeling and inflammation, which may contribute to mechanically induced joint degeneration in diseases such as osteoarthritis. Mechanistically, we hypothesize this may occur through promoting Ca2+ influx and activation of the NFATc1 signaling pathway.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 39 - 39
11 Apr 2023
Jones R Gilbert S Mason D
Full Access

Osteoarthritis (OA) is a common cause of chronic pain. Subchondral bone is highly innervated, and bone structural changes directly correlate with pain in OA. Mechanisms underlying skeletal–neural interactions are under-investigated. Bone derived axon guidance molecules are known to regulate bone remodelling. Such signals in the nervous system regulate neural plasticity, branching and neural inflammation. Perturbation of these signals during OA disease progression may disrupt sensory afferents activity, affecting tissue integrity, nociception, and proprioception.

Osteocyte mechanical loading and IL-6 stimulation alters axon guidance signalling influencing innervation, proprioception, and nociception.

Human Y201 MSC cells, embedded in 3D type I collagen gels (0.05 × 106 cell/gel) in 48 well plastic or silicone (load) plates, were differentiated to osteocytes for 7 days before stimulation with IL-6 (5ng/ml) with soluble IL-6 receptor (sIL-6r (40ng/ml) or unstimulated (n=5/group), or mechanically loaded (5000 μstrain, 10Hz, 3000 cycles) or not loaded (n=5/group). RNA extracted 1hr and 24hrs post load was quantified by RNAseq whole transcriptome analysis (NovaSeq S1 flow cell 2 × 100bp PE reads and differentially expressed neurotransmitters identified (>2-fold change in DEseq2 analysis on normalised count data with FDR p<0.05). After 24 hours, extracted IL-6 stimulated RNA was quantified by RT-qPCR for neurotrophic factors using 2–∆∆Ct method (efficiency=94-106%) normalised to reference gene GAPDH (stability = 1.12 REfinder). Normally distributed data with homogenous variances was analysed by two-tailed t test.

All detected axonal guidance genes were regulated by mechanical load. Axonal guidance genes were both down-regulated (Netrin1 0.16-fold, p=0.001; Sema3A 0.4-fold, p<0.001; SEMA3C (0.4-fold, p<0.001), and up-regulated (SLIT2 2.3-fold, p<0.001; CXCL12 5-fold, p<0.001; SEMA3B 13-fold, p<0.001; SEMA4F 2-fold, p<0.001) by mechanical load. IL6 and IL6sR stimulation upregulated SEMA3A (7-fold, p=0.01), its receptor Plexin1 (3-fold, p=0.03). Neutrophins analysed in IL6 stimulated RNA did not show regulation.

Here we show osteocytes regulate multiple factors which may influence innervation, nociception, and proprioception upon inflammatory or mechanical insult. Future studies will establish how these factors may combine and affect nerve activity during OA disease progression.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 20 - 20
11 Apr 2023
Hamilton R Holt C Hamilton D Garcia A Graham C Jones R Shilabeer D Kuiper J Sparkes V Khot S Mason D
Full Access

Mechanical loading of joints with osteoarthritis (OA) results in pain-related functional impairment, altered joint mechanics and physiological nociceptor interactions leading to an experience of pain. However, the current tools to measure this are largely patient reported subjective impressions of a nociceptive impact. A direct measure of nociception may offer a more objective indicator. Specifically, movement-induced physiological responses to nociception may offer a useful way to monitor knee OA. In this study, we gathered preliminary data on healthy volunteers to analyse whether integrated biomechanical and physiological sensor datasets could display linked and quantifiable information to a nociceptive stimulus.

Following ethical approval, 15 healthy volunteers completed 5 movement and stationary activities in 2 conditions; a control setting and then repeated with an applied quantified thermal pain stimulus to their right knee. An inertial measurement unit (IMU) and an electromyography (EMG) lower body marker set were tested and integrated with ground reaction force (GRF) data collection. Galvanic skin response electrodes for skin temperature and conductivity and photoplethysmography (PPG) sensors were manually timestamped to the integrated system.

Pilot data showed EMG, GRF and IMU fluctuations within 0.5 seconds of each other in response to a thermal trigger. Preliminary analysis on the 15 participants tested has shown skin conductance, PPG, EMG, GRFs, joint angles and kinematics with varying increases and fluctuations during the thermal condition in comparison to the control condition.

Preliminary results suggest physiological and biomechanical data outputs can be linked and identified in response to a defined nociceptive stimulus. Study data is currently founded on healthy volunteers as a proof-of-concept. Further exploratory statistical and sensor readout pattern analysis, alongside early and late-stage OA patient data collection, can provide the information for potential development of wearable nociceptive sensors to measure disease progression and treatment effectiveness.