header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

AXONAL GUIDANCE SIGNALLING IS REGULATED BY MECHANICAL LOADING AND INFLAMMATION IN A 3D MODEL OF HUMAN STEM CELL-DERIVED OSTEOCYTES

The International Combined Orthopaedic Research Societies (ICORS), World Congress of Orthopaedic Research, Edinburgh, Scotland, 7–9 September 2022. Part 2 of 3.



Abstract

Osteoarthritis (OA) is a common cause of chronic pain. Subchondral bone is highly innervated, and bone structural changes directly correlate with pain in OA. Mechanisms underlying skeletal–neural interactions are under-investigated. Bone derived axon guidance molecules are known to regulate bone remodelling. Such signals in the nervous system regulate neural plasticity, branching and neural inflammation. Perturbation of these signals during OA disease progression may disrupt sensory afferents activity, affecting tissue integrity, nociception, and proprioception.

Osteocyte mechanical loading and IL-6 stimulation alters axon guidance signalling influencing innervation, proprioception, and nociception.

Human Y201 MSC cells, embedded in 3D type I collagen gels (0.05 × 106 cell/gel) in 48 well plastic or silicone (load) plates, were differentiated to osteocytes for 7 days before stimulation with IL-6 (5ng/ml) with soluble IL-6 receptor (sIL-6r (40ng/ml) or unstimulated (n=5/group), or mechanically loaded (5000 μstrain, 10Hz, 3000 cycles) or not loaded (n=5/group). RNA extracted 1hr and 24hrs post load was quantified by RNAseq whole transcriptome analysis (NovaSeq S1 flow cell 2 × 100bp PE reads and differentially expressed neurotransmitters identified (>2-fold change in DEseq2 analysis on normalised count data with FDR p<0.05). After 24 hours, extracted IL-6 stimulated RNA was quantified by RT-qPCR for neurotrophic factors using 2–∆∆Ct method (efficiency=94-106%) normalised to reference gene GAPDH (stability = 1.12 REfinder). Normally distributed data with homogenous variances was analysed by two-tailed t test.

All detected axonal guidance genes were regulated by mechanical load. Axonal guidance genes were both down-regulated (Netrin1 0.16-fold, p=0.001; Sema3A 0.4-fold, p<0.001; SEMA3C (0.4-fold, p<0.001), and up-regulated (SLIT2 2.3-fold, p<0.001; CXCL12 5-fold, p<0.001; SEMA3B 13-fold, p<0.001; SEMA4F 2-fold, p<0.001) by mechanical load. IL6 and IL6sR stimulation upregulated SEMA3A (7-fold, p=0.01), its receptor Plexin1 (3-fold, p=0.03). Neutrophins analysed in IL6 stimulated RNA did not show regulation.

Here we show osteocytes regulate multiple factors which may influence innervation, nociception, and proprioception upon inflammatory or mechanical insult. Future studies will establish how these factors may combine and affect nerve activity during OA disease progression.


Email: