Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Bone & Joint Research
Vol. 1, Issue 6 | Pages 104 - 110
1 Jun 2012
Swinteck BJ Phan DL Jani J Owen JR Wayne JS Mounasamy V

Objectives. The use of two implants to manage concomitant ipsilateral femoral shaft and proximal femoral fractures has been indicated, but no studies address the relationship of dynamic hip screw (DHS) side plate screws and the intramedullary nail where failure might occur after union. This study compares different implant configurations in order to investigate bridging the gap between the distal DHS and tip of the intramedullary nail. Methods. A total of 29 left synthetic femora were tested in three groups: 1) gapped short nail (GSN); 2) unicortical short nail (USN), differing from GSN by the use of two unicortical bridging screws; and 3) bicortical long nail (BLN), with two angled bicortical and one unicortical bridging screws. With these findings, five matched-pairs of cadaveric femora were tested in two groups: 1) unicortical long nail (ULN), with a longer nail than USN and three bridging unicortical screws; and 2) BLN. Specimens were axially loaded to 22.7 kg (50 lb), and internally rotated 90°/sec until failure. Results. For synthetic femora, a difference was detected between GSN and BLN in energy to failure (p = 0.04) and torque at failure (p = 0.02), but not between USN and other groups for energy to failure (vs GSN, p = 0.71; vs BLN, p = 0.19) and torque at failure (vs GSN, p = 0.55; vs BLN, p = 0.15). For cadaveric femora, ULN and BLN performed similarly because of the improvement provided by the bridging screws. Conclusions. Our study shows that bicortical angled screws in the DHS side plate are superior to no screws at all in this model and loading scenario, and suggests that adding unicortical screws to a gapped construct is probably beneficial


Bone & Joint Open
Vol. 2, Issue 5 | Pages 330 - 336
21 May 2021
Balakumar B Nandra RS Woffenden H Atkin B Mahmood A Cooper G Cooper J Hindle P

Aims. It is imperative to understand the risks of operating on urgent cases during the COVID-19 (SARS-Cov-2 virus) pandemic for clinical decision-making and medical resource planning. The primary aim was to determine the mortality risk and associated variables when operating on urgent cases during the COVID-19 pandemic. The secondary objective was to assess differences in the outcome of patients treated between sites treating COVID-19 and a separate surgical site. Methods. The primary outcome measure was 30-day mortality. Secondary measures included complications of surgery, COVID-19 infection, and length of stay. Multiple variables were assessed for their contribution to the 30-day mortality. In total, 433 patients were included with a mean age of 65 years; 45% were male, and 90% were Caucasian. Results. Overall mortality was 7.6% for all patients and 15.9% for femoral neck fractures. The mortality rate increased from 7.5% to 44.2% in patients with fracture neck of femur and a COVID-19 infection. The COVID-19 rate in the 30-day postoperative period was 11%. COVID-19 infection, age, and Charlson Comorbidity Index were independent risk factor for mortality. Conclusion. There was a significant risk of contracting COVID-19 due to being admitted to hospital. Using a site which was not treating COVID-19 respiratory patients for surgery did not identify a difference with respect to mortality, nosocomial COVID-19 infection, or length of stay. The COVID-19 pandemic significantly increases perioperative mortality risk in patients with fractured neck of femora but patients with other injuries were not at increased risk. Cite this article: Bone Jt Open 2021;2(5):330–336


Bone & Joint Research
Vol. 2, Issue 5 | Pages 79 - 83
1 May 2013
Goffin JM Pankaj P Simpson AHRW Seil R Gerich TG

Objectives

Because of the contradictory body of evidence related to the potential benefits of helical blades in trochanteric fracture fixation, we studied the effect of bone compaction resulting from the insertion of a proximal femoral nail anti-rotation (PFNA).

Methods

We developed a subject-specific computational model of a trochanteric fracture (31-A2 in the AO classification) with lack of medial support and varied the bone density to account for variability in bone properties among hip fracture patients.


Bone & Joint Research
Vol. 1, Issue 4 | Pages 50 - 55
1 Apr 2012
O’Neill F Condon F McGloughlin T Lenehan B Coffey C Walsh M

Introduction

The objective of this study was to determine if a synthetic bone substitute would provide results similar to bone from osteoporotic femoral heads during in vitro testing with orthopaedic implants. If the synthetic material could produce results similar to those of the osteoporotic bone, it could reduce or eliminate the need for testing of implants on bone.

Methods

Pushout studies were performed with the dynamic hip screw (DHS) and the DHS Blade in both cadaveric femoral heads and artificial bone substitutes in the form of polyurethane foam blocks of different density. The pushout studies were performed as a means of comparing the force displacement curves produced by each implant within each material.