Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
The Bone & Joint Journal
Vol. 100-B, Issue 9 | Pages 1234 - 1240
1 Sep 2018
Brady J Hardy BM Yoshino O Buxton A Quail A Balogh ZJ

Aims. Little is known about the effect of haemorrhagic shock and resuscitation on fracture healing. This study used a rabbit model with a femoral osteotomy and fixation to examine this relationship. Materials and Methods. A total of 18 male New Zealand white rabbits underwent femoral osteotomy with intramedullary fixation with ‘shock’ (n = 9) and control (n = 9) groups. Shock was induced in the study group by removal of 35% of the total blood volume 45 minutes before resuscitation with blood and crystalloid. Fracture healing was monitored for eight weeks using serum markers of healing and radiographs. Results. Four animals were excluded due to postoperative complications. The serum concentration of osteocalcin was significantly elevated in the shock group postoperatively (p < 0.0001). There were otherwise no differences with regard to serum markers of bone healing. The callus index was consistently increased in the shock group on anteroposterior (p = 0.0069) and lateral (p = 0.0165) radiographs from three weeks postoperatively. The control group showed an earlier decrease of callus index. Radiographic scores were significantly greater in the control group (p = 0.0025). Conclusion. In a rabbit femoral osteotomy model with intramedullary fixation, haemorrhagic shock and resuscitation produced larger callus but with evidence of delayed remodelling. Cite this article: Bone Joint J 2018;100-B:1234–40


Bone & Joint Open
Vol. 3, Issue 4 | Pages 284 - 290
1 Apr 2022
O'Hara NN Carullo J Joshi M Banoub M Claeys KC Sprague S Slobogean GP O'Toole RV

Aims

There is increasing evidence to support the use of topical antibiotics to prevent surgical site infections. Although previous research suggests a minimal nephrotoxic risk with a single dose of vancomycin powder, fracture patients often require multiple procedures and receive additional doses of topical antibiotics. We aimed to determine if cumulative doses of intrawound vancomycin or tobramycin powder for infection prophylaxis increased the risk of drug-induced acute kidney injury (AKI) among fracture patients.

Methods

This cohort study was a secondary analysis of single-centre Program of Randomized Trials to Evaluate Pre-operative Antiseptic Skin Solutions in Orthopaedic Trauma (PREP-IT) trial data. We included patients with a surgically treated appendicular fracture. The primary outcome was drug-induced AKI. The odds of AKI per gram of vancomycin or tobramycin powder were calculated using Bayesian regression models, which adjusted for measured confounders and accounted for the interactive effects of vancomycin and tobramycin.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 427 - 435
1 Sep 2016
Stravinskas M Horstmann P Ferguson J Hettwer W Nilsson M Tarasevicius S Petersen MM McNally MA Lidgren L

Objectives

Deep bone and joint infections (DBJI) are directly intertwined with health, demographic change towards an elderly population, and wellbeing.

The elderly human population is more prone to acquire infections, and the consequences such as pain, reduced quality of life, morbidity, absence from work and premature retirement due to disability place significant burdens on already strained healthcare systems and societal budgets.

DBJIs are less responsive to systemic antibiotics because of poor vascular perfusion in necrotic bone, large bone defects and persistent biofilm-based infection. Emerging bacterial resistance poses a major threat and new innovative treatment modalities are urgently needed to curb its current trajectory.

Materials and Methods

We present a new biphasic ceramic bone substitute consisting of hydroxyapatite and calcium sulphate for local antibiotic delivery in combination with bone regeneration. Gentamicin release was measured in four setups: 1) in vitro elution in Ringer’s solution; 2) local elution in patients treated for trochanteric hip fractures or uncemented hip revisions; 3) local elution in patients treated with a bone tumour resection; and 4) local elution in patients treated surgically for chronic corticomedullary osteomyelitis.


Aims

The Intraosseous Transcutaneous Amputation Prosthesis (ITAP) may improve quality of life for amputees by avoiding soft-tissue complications associated with socket prostheses and by improving sensory feedback and function. It relies on the formation of a seal between the soft tissues and the implant and currently has a flange with drilled holes to promote dermal attachment. Despite this, infection remains a significant risk. This study explored alternative strategies to enhance soft-tissue integration.

Materials and Methods

The effect of ITAP pins with a fully porous titanium alloy flange with interconnected pores on soft-tissue integration was investigated. The flanges were coated with fibronectin-functionalised hydroxyapatite and silver coatings, which have been shown to have an antibacterial effect, while also promoting viable fibroblast growth in vitro. The ITAP pins were implanted along the length of ovine tibias, and histological assessment was undertaken four weeks post-operatively.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 144 - 153
1 Mar 2017
Kharwadkar N Mayne B Lawrence JE Khanduja V

Objectives

Bisphosphonates are widely used as first-line treatment for primary and secondary prevention of fragility fractures. Whilst they have proved effective in this role, there is growing concern over their long-term use, with much evidence linking bisphosphonate-related suppression of bone remodelling to an increased risk of atypical subtrochanteric fractures of the femur (AFFs). The objective of this article is to review this evidence, while presenting the current available strategies for the management of AFFs.

Methods

We present an evaluation of current literature relating to the pathogenesis and treatment of AFFs in the context of bisphosphonate use.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 512 - 519
1 Oct 2016
Mills L Tsang J Hopper G Keenan G Simpson AHRW

Objectives

A successful outcome following treatment of nonunion requires the correct identification of all of the underlying cause(s) and addressing them appropriately. The aim of this study was to assess the distribution and frequency of causative factors in a consecutive cohort of nonunion patients in order to optimise the management strategy for individual patients presenting with nonunion.

Methods

Causes of the nonunion were divided into four categories: mechanical; infection; dead bone with a gap; and host. Prospective and retrospective data of 100 consecutive patients who had undergone surgery for long bone fracture nonunion were analysed.


Bone & Joint Research
Vol. 5, Issue 4 | Pages 106 - 115
1 Apr 2016
Gruber HE Ode G Hoelscher G Ingram J Bethea S Bosse MJ

Objectives

The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics.

Methods

Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student t-test (two tailed; p < 0.05 was considered significant).


Bone & Joint Research
Vol. 2, Issue 3 | Pages 51 - 57
1 Mar 2013
Sullivan MP Torres SJ Mehta S Ahn J

Neurogenic heterotopic ossification (NHO) is a disorder of aberrant bone formation affecting one in five patients sustaining a spinal cord injury or traumatic brain injury. Ectopic bone forms around joints in characteristic patterns, causing pain and limiting movement especially around the hip and elbow. Clinical sequelae of neurogenic heterotopic ossification include urinary tract infection, pressure injuries, pneumonia and poor hygiene, making early diagnosis and treatment clinically compelling. However, diagnosis remains difficult with more investigation needed. Our pathophysiological understanding stems from mechanisms of basic bone formation enhanced by evidence of systemic influences from circulating humor factors and perhaps neurological ones. This increasing understanding guides our implementation of current prophylaxis and treatment including the use of non-steroidal anti-inflammatory drugs, bisphosphonates, radiation therapy and surgery and, importantly, should direct future, more effective ones.


Bone & Joint Research
Vol. 1, Issue 8 | Pages 174 - 179
1 Aug 2012
Alfieri KA Forsberg JA Potter BK

Heterotopic ossification (HO) is perhaps the single most significant obstacle to independence, functional mobility, and return to duty for combat-injured veterans of Operation Enduring Freedom and Operation Iraqi Freedom. Recent research into the cause(s) of HO has been driven by a markedly higher prevalence seen in these wounded warriors than encountered in previous wars or following civilian trauma. To that end, research in both civilian and military laboratories continues to shed light onto the complex mechanisms behind HO formation, including systemic and wound specific factors, cell lineage, and neurogenic inflammation. Of particular interest, non-invasive in vivo testing using Raman spectroscopy may become a feasible modality for early detection, and a wound-specific model designed to detect the early gene transcript signatures associated with HO is being tested. Through a combined effort, the goals of early detection, risk stratification, and development of novel systemic and local prophylaxis may soon be attainable.