The aim of this study was to develop and evaluate machine-learning-based computerized adaptive tests (CATs) for the Oxford Hip Score (OHS), Oxford Knee Score (OKS), Oxford Shoulder Score (OSS), and the Oxford Elbow Score (OES) and its subscales. We developed CAT algorithms for the OHS, OKS, OSS, overall OES, and each of the OES subscales, using responses to the full-length questionnaires and a machine-learning technique called regression tree learning. The algorithms were evaluated through a series of simulation studies, in which they aimed to predict respondents’ full-length questionnaire scores from only a selection of their item responses. In each case, the total number of items used by the CAT algorithm was recorded and CAT scores were compared to full-length questionnaire scores by mean, SD, score distribution plots, Pearson’s correlation coefficient, intraclass correlation (ICC), and the Bland-Altman method. Differences between CAT scores and full-length questionnaire scores were contextualized through comparison to the instruments’ minimal clinically important difference (MCID).Aims
Methods
The evidence base within trauma and orthopaedics has traditionally favoured quantitative research methodologies. Qualitative research can provide unique insights which illuminate patient experiences and perceptions of care. Qualitative methods reveal the subjective narratives of patients that are not captured by quantitative data, providing a more comprehensive understanding of patient-centred care. The aim of this study is to quantify the level of qualitative research within the orthopaedic literature. A bibliometric search of journals’ online archives and multiple databases was undertaken in March 2024, to identify articles using qualitative research methods in the top 12 trauma and orthopaedic journals based on the 2023 impact factor and SCImago rating. The bibliometric search was conducted and reported in accordance with the preliminary guideline for reporting bibliometric reviews of the biomedical literature (BIBLIO).Aims
Methods
Chronic osteomyelitis (COM) of the lower limb in adults can be surgically managed by either limb reconstruction or amputation. This scoping review aims to map the outcomes used in studies surgically managing COM in order to aid future development of a core outcome set. A total of 11 databases were searched. A subset of studies published between 1 October 2020 and 1 January 2011 from a larger review mapping research on limb reconstruction and limb amputation for the management of lower limb COM were eligible. All outcomes were extracted and recorded verbatim. Outcomes were grouped and categorized as per the revised Williamson and Clarke taxonomy.Aims
Methods
Despite the vast quantities of published artificial intelligence (AI) algorithms that target trauma and orthopaedic applications, very few progress to inform clinical practice. One key reason for this is the lack of a clear pathway from development to deployment. In order to assist with this process, we have developed the Clinical Practice Integration of Artificial Intelligence (CPI-AI) framework – a five-stage approach to the clinical practice adoption of AI in the setting of trauma and orthopaedics, based on the IDEAL principles ( Cite this article:
Patients undergoing limb reconstruction surgery often face a challenging and lengthy process to complete their treatment journey. The majority of existing outcome measures do not adequately capture the patient-reported outcomes relevant to this patient group in a single measure. Following a previous systematic review, the Stanmore Limb Reconstruction Score (SLRS) was designed with the intent to address this need for an effective instrument to measure patient-reported outcomes in limb reconstruction patients. We aim to assess the face validity of this score in a pilot study. The SLRS was designed following structured interviews with several groups including patients who have undergone limb reconstruction surgery, limb reconstruction surgeons, specialist nurses, and physiotherapists. This has subsequently undergone further adjustment for language and clarity. The score was then trialled on ten patients who had undergone limb reconstruction surgery, with subsequent structured questioning to understand the perceived suitability of the score.Aims
Methods
Patient-reported outcome measures have become an important part of routine care. The aim of this study was to determine if Patient-Reported Outcomes Measurement Information System (PROMIS) measures can be used to create patient subgroups for individuals seeking orthopaedic care. This was a cross-sectional study of patients from Duke University Department of Orthopaedic Surgery clinics (14 ambulatory and four hospital-based). There were two separate cohorts recruited by convenience sampling (i.e. patients were included in the analysis only if they completed PROMIS measures during a new patient visit). Cohort #1 (n = 12,141; December 2017 to December 2018,) included PROMIS short forms for eight domains (Physical Function, Pain Interference, Pain Intensity, Depression, Anxiety, Sleep Quality, Participation in Social Roles, and Fatigue) and Cohort #2 (n = 4,638; January 2019 to August 2019) included PROMIS Computer Adaptive Testing instruments for four domains (Physical Function, Pain Interference, Depression, and Sleep Quality). Cluster analysis (K-means method) empirically derived subgroups and subgroup differences in clinical and sociodemographic factors were identified with one-way analysis of variance.Aims
Methods
Elective orthopaedic services have had to adapt to significant system-wide pressures since the emergence of COVID-19 in December 2019. Length of stay is often recognized as a key marker of quality of care in patients undergoing arthroplasty. Expeditious discharge is key in establishing early rehabilitation and in reducing infection risk, both procedure-related and from COVID-19. The primary aim was to determine the effects of the COVID-19 pandemic length of stay following hip and knee arthroplasty at a high-volume, elective orthopaedic centre. A retrospective cohort study was performed. Patients undergoing primary or revision hip or knee arthroplasty over a six-month period, from 1 July to 31 December 2020, were compared to the same period in 2019 before the COVID-19 pandemic. Demographic data, American Society of Anesthesiologists (ASA) grade, wait to surgery, COVID-19 status, and length of hospital stay were recorded.Aims
Methods
There is widespread variation in the management of rare orthopaedic disease, in a large part owing to uncertainty. No individual surgeon or hospital is typically equipped to amass sufficient numbers of cases to draw robust conclusions from the information available to them. The programme of research will establish the British Orthopaedic Surgery Surveillance (BOSS) Study; a nationwide reporting structure for rare disease in orthopaedic surgery. The BOSS Study is a series of nationwide observational cohort studies of pre-specified orthopaedic disease. All relevant hospitals treating the disease are invited to contribute anonymised case details. Data will be collected digitally through REDCap, with an additional bespoke software solution used to regularly confirm case ascertainment, prompt follow-up reminders and identify potential missing cases from external sources of information (i.e. national administrative data). With their consent, patients will be invited to enrich the data collected by supplementing anonymised case data with patient reported outcomes. The study will primarily seek to calculate the incidence of the rare diseases under investigation, with 95% confidence intervals. Descriptive statistics will be used to describe the case mix, treatment variations and outcomes. Inferential statistical analysis may be used to analyze associations between presentation factors and outcomes. Types of analyses will be contingent on the disease under investigation.Introduction
Methods