Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
Bone & Joint Research
Vol. 11, Issue 2 | Pages 82 - 90
7 Feb 2022
Eckert JA Bitsch RG Sonntag R Reiner T Schwarze M Jaeger S

Aims. The cemented Oxford unicompartmental knee arthroplasty (OUKA) features two variants: single and twin peg OUKA. The purpose of this study was to assess the stability of both variants in a worst-case scenario of bone defects and suboptimal cementation. Methods. Single and twin pegs were implanted randomly allocated in 12 pairs of human fresh-frozen femora. We generated 5° bone defects at the posterior condyle. Relative movement was simulated using a servohydraulic pulser, and analyzed at 70°/115° knee flexion. Relative movement was surveyed at seven points of measurement on implant and bone, using an optic system. Results. At the main fixation zone, the twin peg shows less relative movement at 70°/115°. At the transition zone, relative movements are smaller for the single peg for both angles. The single peg shows higher compression at 70° flexion, whereas the twin peg design shows higher compression at 115°. X-displacement is significantly higher for the single peg at 115°. Conclusion. Bony defects should be avoided in OUKA. The twin peg shows high resilience against push-out force and should be preferred over the single peg. Cite this article: Bone Joint Res 2022;11(2):82–90


Bone & Joint Research
Vol. 7, Issue 3 | Pages 226 - 231
1 Mar 2018
Campi S Mellon SJ Ridley D Foulke B Dodd CAF Pandit HG Murray DW

Objectives. The primary stability of the cementless Oxford Unicompartmental Knee Replacement (OUKR) relies on interference fit (or press fit). Insufficient interference may cause implant loosening, whilst excessive interference could cause bone damage and fracture. The aim of this study was to identify the optimal interference fit by measuring the force required to seat the tibial component of the cementless OUKR (push-in force) and the force required to remove the component (pull-out force). Materials and Methods. Six cementless OUKR tibial components were implanted in 12 new slots prepared on blocks of solid polyurethane foam (20 pounds per cubic foot (PCF), Sawbones, Malmo, Sweden) with a range of interference of 0.1 mm to 1.9 mm using a Dartec materials testing machine HC10 (Zwick Ltd, Herefordshire, United Kingdom) . The experiment was repeated with cellular polyurethane foam (15 PCF), which is a more porous analogue for trabecular bone. Results. The push-in force progressively increased with increasing interference. The pull-out force was related in a non-linear fashion to interference, decreasing with higher interference. Compared with the current nominal interference, a lower interference would reduce the push-in forces by up to 45% (p < 0.001 One way ANOVA) ensuring comparable (or improved) pull-out forces (p > 0.05 Bonferroni post hoc test). With the more porous bone analogue, although the forces were lower, the relationship between interference and push-in and pull-out force were similar. Conclusions. This study suggests that decreasing the interference fit of the tibial component of the cementless OUKR reduces the push-in force and can increase the pull-out force. An optimal interference fit may both improve primary fixation and decrease the risk of fracture. Cite this article: S. Campi, S. J. Mellon, D. Ridley, B. Foulke, C. A. F. Dodd, H. G. Pandit, D. W. Murray. Optimal interference of the tibial component of the cementless Oxford Unicompartmental Knee Replacement. Bone Joint Res 2018;7:226–231. DOI: 10.1302/2046-3758.73.BJR-2017-0193.R1


Bone & Joint Research
Vol. 8, Issue 11 | Pages 535 - 543
1 Nov 2019
Mohammad HR Campi S Kennedy JA Judge A Murray DW Mellon SJ

Objectives. The aim of this study was to determine the polyethylene wear rate of Phase 3 Oxford Unicompartmental Knee Replacement bearings and to investigate the effects of resin type and manufacturing process. Methods. A total of 63 patients with at least ten years’ follow-up with three bearing types (1900 resin machined, 1050 resin machined, and 1050 resin moulded) were recruited. Patients underwent full weight-bearing model-based radiostereometric analysis to determine the bearing thickness. The linear wear rate was estimated from the change in thickness divided by the duration of implantation. Results. The wear rate for 1900 resin machined (n = 19), 1050 machined (n = 21), and 1050 moulded bearings (n = 23) were 60 µm/year (. sd. 42), 76 µm/year (. sd. 32), and 57 µm/year (. sd. 30), respectively. There was no significant difference between 1900 machined and 1050 machined (p = 0.20), but 1050 moulded had significantly less wear than the 1050 machined (p = 0.05). Increasing femoral (p < 0.001) and tibial (p < 0.001) component size were associated with increasing wear. Conclusion. Wear rate is similar with 1050 and 1900 resin, but lower with moulded bearings than machined bearings. The currently used Phase 3 bearings wear rate is low (1050 moulded, 57 µm/year), but higher than the previously reported Phase 2 bearings (1900 moulded, 20 µm/year). This is unlikely to be due to the change in polyethylene but may relate to the minimally invasive approach used with the Phase 3. This approach, as well as improving function and thus increasing activity levels, may increase the risk of surgical errors, such as impingement or bearing overhang, which can increase wear. Surgeons should aim to use 4 mm thick bearings rather than 3 mm thick bearings in young patients, unless they are small and need conservative bone resections. Cite this article: Bone Joint Res 2019;8:535–543


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 345 - 349
1 Mar 2014
Liddle AD Pandit HG Jenkins C Lobenhoffer P Jackson WFM Dodd CAF Murray DW

The cementless Oxford unicompartmental knee replacement has been demonstrated to have superior fixation on radiographs and a similar early complication rate compared with the cemented version. However, a small number of cases have come to our attention where, after an apparently successful procedure, the tibial component subsides into a valgus position with an increased posterior slope, before becoming well-fixed. We present the clinical and radiological findings of these six patients and describe their natural history and the likely causes. Two underwent revision in the early post-operative period, and in four the implant stabilised and became well-fixed radiologically with a good functional outcome.

This situation appears to be avoidable by minor modifications to the operative technique, and it appears that it can be treated conservatively in most patients.

Cite this article: Bone Joint J 2014;96-B:345–9.


The Bone & Joint Journal
Vol. 98-B, Issue 10_Supple_B | Pages 22 - 27
1 Oct 2016
Bottomley N Jones LD Rout R Alvand A Rombach I Evans T Jackson WFM Beard DJ Price AJ

Aims

The aim of this to study was to compare the previously unreported long-term survival outcome of the Oxford medial unicompartmental knee arthroplasty (UKA) performed by trainee surgeons and consultants.

Patients and Methods

We therefore identified a previously unreported cohort of 1084 knees in 947 patients who had a UKA inserted for anteromedial knee arthritis by consultants and surgeons in training, at a tertiary arthroplasty centre and performed survival analysis on the group with revision as the endpoint.


The Bone & Joint Journal
Vol. 98-B, Issue 10_Supple_B | Pages 11 - 15
1 Oct 2016
Konan S Haddad FS

Aims

Medial unicompartmental knee arthroplasty (UKA) is associated with successful outcomes in carefully selected patient cohorts. We hypothesised that severity and location of patellofemoral cartilage lesions significantly influences functional outcome after Oxford medial compartmental knee arthroplasty.

Patients and Methods

We reviewed 100 consecutive UKAs at minimum eight-year follow-up (96 to 132). A single surgeon performed all procedures. Patients were selected based on clinical and plain radiographic assessment. All patients had end-stage medial compartment osteoarthritis (OA) with sparing of the lateral compartment and intact anterior cruciate ligaments. None of the patients had end-stage patellofemoral OA, but patients with anterior knee pain or partial thickness chondral loss were not excluded. There were 57 male and 43 female patients. The mean age at surgery was 69 years (41 to 82). At surgery the joint was carefully inspected for patellofemoral chondral loss and this was documented based on severity of cartilage loss (0 to 4 Outerbridge grading) and topographic location (medial, lateral, central, and superior or inferior). Functional scores collected included Oxford Knee Score (OKS), patient satisfaction scale and University College Hospital (UCH) knee score. Intraclass correlation was used to compare chondral damage to outcomes.


Bone & Joint Research
Vol. 9, Issue 6 | Pages 272 - 278
1 Jun 2020
Tapasvi S Shekhar A Patil S Pandit H

Aims. The mobile bearing Oxford unicompartmental knee arthroplasty (OUKA) is recommended to be performed with the leg in the hanging leg (HL) position, and the thigh placed in a stirrup. This comparative cadaveric study assesses implant positioning and intraoperative kinematics of OUKA implanted either in the HL position or in the supine leg (SL) position. Methods. A total of 16 fresh-frozen knees in eight human cadavers, without macroscopic anatomical defects, were selected. The knees from each cadaver were randomized to have the OUKA implanted in the HL or SL position. Results. Tibial base plate rotation was significantly more variable in the SL group with 75% of tibiae mal-rotated. Multivariate analysis of navigation data found no difference based on all kinematic parameters across the range of motion (ROM). However, area under the curve analysis showed that knees placed in the HL position had much smaller differences between the pre- and post-surgery conditions for kinematics mean values across the entire ROM. Conclusion. The sagittal tibia cut, not dependent on standard instrumentation, determines the tibial component rotation. The HL position improves accuracy of this step compared to the SL position, probably due to better visuospatial orientation of the hip and knee to the surgeon. The HL position is better for replicating native kinematics of the knee as shown by the area under the curve analysis. In the supine knee position, care must be taken during the sagittal tibia cut, while checking flexion balance and when sizing the tibial component


Bone & Joint Research
Vol. 11, Issue 4 | Pages 210 - 213
1 Apr 2022
Fontalis A Haddad FS


The Bone & Joint Journal
Vol. 98-B, Issue 10_Supple_B | Pages 34 - 40
1 Oct 2016
Emerson RH Alnachoukati O Barrington J Ennin K

Aims

Approved by the Food and Drug Administration in 2004, the Phase III Oxford Medial Partial Knee is used to treat anteromedial osteoarthritis (AMOA) in patients with an intact anterior cruciate ligament. This unicompartmental knee arthroplasty (UKA) is relatively new in the United States, and therefore long-term American results are lacking.

Patients and Methods

This is a single surgeon, retrospective study based on prospectively collected data, analysing a consecutive series of primary UKAs using the Phase III mobile-bearing Oxford Knee and Phase III instrumentation.

Between July 2004 and December 2006, the senior author (RHE) carried out a medial UKA in 173 patients (213 knees) for anteromedial osteoarthritis or avascular necrosis (AVN).

A total of 95 patients were men and 78 were women. Their mean age at surgery was 67 years (38 to 89) and mean body mass index 29.87 kg/m2 (17 to 62).

The mean follow-up was ten years (4 to 11).