Objectives. The objective of this study was to determine if combining variations in mixing technique of antibiotic-impregnated polymethylmethacrylate (PMMA) cement with low frequency ultrasound (LFUS) improves antibiotic elution during the initial high phase (Phase I) and subsequent low phase (Phase II) while not diminishing mechanical strength. Methods. Three batches of vancomycin-loaded PMMA were prepared with different mixing techniques: a standard technique; a delayed technique; and a control without antibiotic. Daily elution samples were analysed using flow injection analysis (FIA). Beginning in Phase II, samples from each mix group were selected randomly to undergo either five, 15, 45, or 0 minutes of LFUS treatment. Elution amounts between LFUS treatments were analysed. Following Phase II,
Microindentation has the potential to measure the stiffness of an individual patient’s bone. Bone stiffness plays a crucial role in the press-fit stability of orthopaedic implants. Arming surgeons with accurate bone stiffness information may reduce surgical complications including periprosthetic fractures. The question addressed with this systematic review is whether microindentation can accurately measure cortical bone stiffness. A systematic review of all English language articles using a keyword search was undertaken using Medline, Embase, PubMed, Scopus and Cochrane databases. Studies that only used nanoindentation, cancellous bone or animal tissue were excluded.Objectives
Methods
Objectives. Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls. Methods. Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically
The objective of this study was to compare the elution characteristics,
antimicrobial activity and mechanical properties of antibiotic-loaded
bone cement (ALBC) loaded with powdered antibiotic, powdered antibiotic
with inert filler (xylitol), or liquid antibiotic, particularly focusing
on vancomycin and amphotericin B. Cement specimens loaded with 2 g of vancomycin or amphotericin
B powder (powder group), 2 g of antibiotic powder and 2 g of xylitol
(xylitol group) or 12 ml of antibiotic solution containing 2 g of
antibiotic (liquid group) were tested.Objectives
Methods
The objective of this study is to determine an optimal antibiotic-loaded
bone cement (ALBC) for infection prophylaxis in total joint arthroplasty
(TJA). We evaluated the antibacterial effects of polymethylmethacrylate
(PMMA) bone cements loaded with vancomycin, teicoplanin, ceftazidime,
imipenem, piperacillin, gentamicin, and tobramycin against methicillin-sensitive Objectives
Methods