Animal models have been developed that allow simulation of post-traumatic joint contracture. One such model involves contracture-forming surgery followed by surgical capsular release. This model allows testing of antifibrotic agents, such as rosiglitazone. A total of 20 rabbits underwent contracture-forming surgery. Eight weeks later, the animals underwent a surgical capsular release. Ten animals received rosiglitazone (intramuscular initially, then orally). The animals were sacrificed following 16 weeks of free cage mobilisation. The joints were tested biomechanically, and the posterior capsule was assessed histologically and via genetic microarray analysis.Aims
Methods
The goal of this study was to determine whether intra-articular
administration of the potentially anti-fibrotic agent decorin influences
the expression of genes involved in the fibrotic cascade, and ultimately
leads to less contracture, in an animal model. A total of 18 rabbits underwent an operation on their right knees
to form contractures. Six limbs in group 1 received four intra-articular
injections of decorin; six limbs in group 2 received four intra-articular
injections of bovine serum albumin (BSA) over eight days; six limbs
in group 3 received no injections. The contracted limbs of rabbits
in group 1 were biomechanically and genetically compared with the
contracted limbs of rabbits in groups 2 and 3, with the use of a
calibrated joint measuring device and custom microarray, respectively.Objectives
Methods