Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

LARGE KEYHOLES IMPROVE TORSIONAL RESISTANCE OF THR ACETABULAR CEMENT MANTLES

European Orthopaedic Research Society (EORS) 2015, Annual Conference, 2–4 September 2015. Part 2.



Abstract

Background

It is hypothesised that good torsional resistance of the acetabular cement mantle can increase the stability and longevity of cemented THR. Surgeons aim to achieve this by drilling keyholes (KH) in the acetabulum for the cement to penetrate. This study aims to reduce the surgical variability by investigating the influence of KH diameter on torsional resistance for a range of acetabular diameters.

Methods

Three most common diameters of acetabula were tested (50, 54 and 58 mm) to compare three types of KHs: A) 3 × 12 mm diameter, 120° apart, 6 mm deep blind holes; B) 6 × 6 mm diameter, 60° apart, 6 mm deep blind holes; C) 6 × 6 mm diameter, 60° apart, through holes.

An anatomically accurate experimental rig to simulate the implanted acetabulum was used, it allowed the torque strength of a cement mantle to be measured. The cups were cemented into the rig to create a 4 mm mantle and left to cure for 24 h at room temperature. Each sample was tested in the torque rig by applying a ramp displacement at 1.5 °/min until failure. The test was repeated four times for each acetabulum-keyhole combination. Peak torque was used for quantifying torsional resistance.

Results

The mean and standard deviation peak torque for the A keyholes was 194 Nm (25.7), 251 Nm (25.3) and 334 Nm (20.9) for 50, 54 and 58 mm respectively; for the B keyholes the peak torque was 146 Nm (54.0), 143 Nm (48.6), 123 Nm (29.5); and for the C keyholes the peak torque was 208 Nm (6.0), 278 Nm (25.5), 244 Nm (74.1). Mann-Whitney test detected significant differences only between A and B groups at 54 mm (p = 0.021) and 58 mm (p=0.021). The torsional resistance increased with acetabular diameter only for the A keyholes (Kruskal Wallis Test, p = 0.01).

Conclusions

The larger keyholes provided more consistent and substantially higher peak torque values. The difference was more evident with the increasing acetabular diameter. The large variability in the B keyholes was caused by poor cement penetration, this could potentially be the case clinically. C keyholes were an improvement, yet there were still consistency issues for the larger acetabulum. The limiting factor was the cement-cup interface, which is also where the failure occurred (except for most of the B keyholes and 58 mm acetabulum C keyholes).

Level of Evidence

II b