Abstract
Background
Devices are frequently used to gain sufficient purchase in a bone so that the bone itself can be manipulated to move or rupture soft tissue attachments. During hip surgery, several different extraction corkscrews are available to remove the femoral head, each with a different screw design with no evidence to suggest which is most effective. Additionally during the use of corkscrew devices, often due to the low bone density, stripping of the screw threads out of the femoral head can occur prior to its extraction, thus requiring reinsertion. The aims of this project were to measure the primary pullout and reinsertional forces of five commercially available corkscrews.
Methods
Polyurethane bone models covering a spectrum of osteoporotic to normal bone densities (0.08 gcm-3, 0.16 gcm-3 and 0.32 gcm-3) were used in axial tensile testing at two insertional depths to assess the maximum pullout force of these corkscrews (Zimmer, Stryker, Medacta, JRI, Depuy).
Results
There are significant differences between the pullout forces produced throughout the different densities at both insertional depths; 0.08gcm-3 (p=0.002), 0.16 gcm-3 (p<0.001) and 0.32 gcm-3 (p=0.006). Reinsertional testing on all corkscrews demonstrated a reduction in the pullout force of approximately 70%, underlining the benefit of effective insertion and extraction on the first attempt.
Conclusion
In all bone model densities, consistent differences in the pullout forces generated were identified. All the corkscrews generate forces greater than the estimated forces required to yield the soft tissues attached to a femoral head. Further work into optimising the corkscrew design, especially regarding the torque generated during insertion, will improve the efficacy of future corkscrew use. This information should be transferable to other situations where manipulation of a bone is needed at the temporary or permanent expense of the attached soft tissues.
Level of Evidence
V: Biomechanical study