Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

TRIBOLOGICAL BEHAVIOUR OF THE “REVERSE” INVERSE SHOULDER PROSTHESIS

European Orthopaedic Research Society (EORS) 2015, Annual Conference, 2–4 September 2015. Part 1.



Abstract

Background

When reversing the hard-soft articulation in inverse shoulder replacement, i.e. hard inlay and soft glenosphere, the tribological behaviour of such a pairing has to be tested thoroughly. Therefore, two hard materials for the inlay, CoCr alloy and alumina toughened zirconia ceramic (ATZ) articulating on two soft materials, conventional UHMWPE and vitamin E stabilised, highly cross-linked PE (E-XLPE) were tested.

Methods

The simulator tests were performed analogue to standardised gravimetric wear tests for hip prosthesis (ISO 14242-1) with load and motion curves adapted to the shoulder. The test parameters differing from the standard were the maximum force (1.0 kN) and the range of motion. A servo-hydraulic six station joint simulator (EndoLab, Rosenheim) was used to run the tests up to 5 times 106 cycles with diluted calf serum at 37° C as lubricant.

Results

The wear rates measured in the simulator when the CoCr alloy inlay articulated on UHMWPE and E-XLPE were respectively 32.50 +/− 3.48 mg/Mcycle and 10.65 +/− 2.36 mg/Mcycle. In comparison, when the ATZ inlay articulated on UHMWPE and E-XLPE the wear rates were 20.34 +/− 1.14 mg/Mcycle and 5.99 +/− 0.79 mg/Mcycle respectively.

Conclusions

The simulator wear rate of the standard articulation CoCr – UHMWPE is similar to that found in the corresponding pairing for hip endoprosthesis. Replacing UHMWPE by E-XLPE, the wear rate is reduced to about 1/3 for both hard counterparts, CoCr and ZTA, respectively. Replacing the CoCr inlay by a part made from ZTA lowers wear by about 37 % in articulation against UHMWPE and about 44 % against E-XLPE. The lowest wear rate, with a reduction of about 80 % compared to the standard CoCr – UHMWPE, exhibits the pairing of both advanced materials, ZTA – E-XLPE. However, long-term clinical follow-up will confirm if this in-vitro wear reduction leads to longer in-vivo survival.

Level of evidence

Laboratory test on sample implants.

Study financed by Mathys Orthopaedie GmbH