Abstract
Background
Fretting at modular junctions is thought to be a ‘mechanically assisted’ corrosion phenomenon, initiated by mechanical factors that lead to increased contact stresses and micromotions at the taper interface. We adopted a finite element approach to model the head-taper junction, to analyse the contact mechanics at the taper interface. We investigated the effect of assembly force and angle on contact pressures and micromotions, during loads commonly used to test hip implants, to demonstrate the importance of a good assembly during surgery.
Methods
Models of the Bimetric taper and adaptor were created, with elastic-plastic material properties based on material tests with the actual implant alloy. FE contact conditions were validated against push-on and pull-off experiments. The models were loaded according to ISO 7206-4 and −6, after being assembled at 2-4-15kN, both axially and at a 30° angle. Average micromotions and contact pressures were analysed, and a wear score was calculated based on the contact pressures and micromotions.
Results
The average contact pressure decreased when a higher assembly force was used, with loads being distributed over a larger contact area, but increased when tested at a 30° angle. Average micromotions reduced with a higher assembly load, except when assembled at a 30° angle. The wear score decreased with increasing assembly force, when applied perpendicularly, while when assembled at a 30° angle, the wear score did not reduce with assembly force.
Conclusions
The location and patterns of micromotions were consistent with retrieved tapers and those generated in in-vitro test models. Increased impaction loads reduced the average amount of micromotion and fretting. We intend to apply more complex loading regimes in future analyses, enabling to study phenomena such as edge loading and frictional torque.
Level of evidence
IIb - Experimental study
Disclosure
This study was financially supported by Biomet UK Healthcare Ltd.