Abstract
Conventional total knee arthroplasty aims to place the joint line perpendicular to the mechanical axis resulting in an overall neutral mechanical alignment. This objective is promulgated despite the fact healthy adult populations are on average in varus with few proximal tibias being neutral to the mechanical axis. The goal of a neutral mechanical axis is based largely on historical studies and the fact that it is easier to make a neutral tibial cut with conventional jigs and the eye. In order to balance the flexion and extension gap to accommodate a neutral tibial cut, in most patients, asymmetrical distal and posterior femoral cuts are required. The resulting position of the femoral component could be considered to be “mal-rotated” with respect to the patient's soft tissue envelope. Soft tissue releases are often required to “balance” the knee. Planning and execution of the surgery are largely based off 2-dimensional radiographs which grossly oversimplifies the concept of alignment to the coronal plane, largely ignoring what happens to the knee in 3 dimensions through range of motion and 4 dimensions with respect to gait, stair climbing, etc. Subsequently, sticking with neutral mechanical for all engenders the “looks' good, feels bad” phenomenon seen in many patients that may in part drive the higher dissatisfaction rates seen in knee arthroplasty globally compared to hip arthroplasty.
New imaging and surgical techniques allow for the identification of patient specific alignment targets and the ability to more precisely execute the surgical plan with respect to 3-dimensional placement of the components. Long-term outcomes studies as well as more recent studies on “kinematic” positioning suggest that deviation away from a neutral mechanical target may in fact be safe with respect to survivorship and provide better function with a more “natural” feeling knee.