Abstract
Hip osteoarthritis (OA) is a disorder of high socio-economic relevance. The causes of hip osteoarthritis are multifactorial; however, the epidemiological literature regularly cites occupational tasks, such as heavy lifting and carrying, as a risk factor for the development of hip OA. The level of mechanical stresses upon the hip joint caused by occupational tasks remain largely unclear, however. This project sought to quantify the levels of stresses upon the hip joint during occupational tasks. In particular we were interested in comparing load as well as stress levels from everyday activities with occupational tasks typically performed by blue collar workers.
Sectors and occupational activities presenting a high potential for stress upon the hip joint were identified by means of a survey conducted among accident insurance institutions. Lifting, carrying and load transfer (25 to 50 kg), ladder climbing and stair climbing (without additional load and with an additional load of 25 kg) were selected from among these sectors and activities for the purpose of the study. Laboratory measurements were performed in which motion capturing and a range of force measurement apparatus were used to record and evaluate the performance of the selected tasks by 12 skilled workers from a number of sectors. multi-body simulation was used to calculate the stress in the form of hip-joint contact forces. The contact pressures and their geometric distribution on the cartilage surfaces of the hip joint were then calculated from these results by means of finite-element analysis. This produced an indicator for the strain upon the hip joint.
The highest hip-joint forces, at (637±148)% of the body weight, occurred during handling of the 50 kg load. This corresponded to 1.7 times the stress arising during walking, at (368±78)% of the body weight. Significantly higher hip-joint forces compared to those arising during walking were observed for the carrying of loads of 40 kg and 50 kg, the handling of loads of 25 kg, 40 kg and 50 kg, and stair climbing with an additional load of 25 kg. Maximum contact pressures of 24.1 MPa were computed during the finite-element analysis (lifting of 50 kg); only very small regions of the joint surface were however affected by these high pressures. During walking, the maximum pressure reached 15 MPa.
The results obtained provide a quantitative overview of the strains upon the hip joint during occupational and everyday tasks. They constitute an aid to future quantitative exposure assessments in a range of sectors and occupational fields, and thus contribute to improving estimation of the relevance of stresses of occupational origin to the incidence of hip OA.