Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Volume 99-B, Issue SUPP_1 January 2017 European Orthopaedic Research Society (EORS) 2016, 24th Annual Meeting, 14–16 September 2016. Part 1.

I. Reeder M. Lipperts I.C. Heyligers B. Grimm

Introduction: Physical activity is a major outcome in total hip arthroplasty (THA) and discharge criterion. Increasing immediate post-op activity may accelerate discharge, enable fast track surgery and improve general rehabilitation. Preliminary evidence (O'Halloran P.D. et al. 2015) shows that feedback via motivational interviewing can result in clinically meaningful improvements of physical activity. It was the aim of this study to use wearable sensor activity monitors to provide and study the effect of biofeedback on THA patients' activity levels. It was hypothesized that biofeedback would increase in-hospital and post-discharge activity versus controls.

Methods: In this pilot study, 18 patients with osteoarthritis receiving elective primary THA followed by a rapid recovery protocol with discharge on day 3 after surgery (day 0) were randomized to the feedback group (n=9, M/F: 4:5, age 63.3 ± 5.9 years, BMI 26.9 ± 5.1) or a non-feedback control group (n=9, M/F: 0:9, age 66.9 ± 5.1 years, BMI 27.1 ± 4.0). Physical activity was measured using a wearable sensor and parameters (Time-on-Feet (ToF), steps, sit-stand-transfers (SST), mean cadence (steps/min)) were calculated using a previously validated algorithms (Matlab). For the in-hospital period data was calculated twice daily (am, ca. 8–13:00h and pm, ca. 13–20:00h) of day 1 (D1) and 2 (D2). The feedback group had parameters reported back twice (morning, lunch) using bar charts comparing visually and numerically their values (without motivational instructions) to a previously measured reference group (n=40, age 71 ±7 years, M:F 16:24) of a conventional discharge protocol (day 4/5). Activity measures continued from discharge (D3) until day 5 (D5) at home.

Results: Randomization resulted in matched groups regarding age and BMI, but not gender. The first post-op activity assessment (D1am) was identical between groups. Also thereafter similar values with no significant differences in any parameter were seen, e.g. the time-on-feet at D2PM was 59.2 ±31.7min (feedback) versus 62.9 ±39.2min (controls). Also on the day of discharge and beyond, no effect from the in-hospital feedback was measured. For both groups the course of activity recovery showed a distinct drop on day 4 following a highly active day of discharge (D3). On day 5, activity levels only recovered partially. For both groups, all quantitative activity parameters were significantly higher than the reference values used for feedback. Only cadence as a qualitative measure was the same like reference values.

Discussion: Biofeedback using activity values from a body-worn monitor did not increase in-hospital or immediate post-op home activity levels compared to a control group when using the investigated feedback protocol. In general, while the day of discharge steeply boosts patient activity, the day after at home results in an activity drop to near in-patient levels before discharge. In a fast track surgery protocol, it may be of value to avoid this drop via patient education or home physiotherapy. Biofeedback using activity monitors to increase immediate post-op activity for fast track surgery or improved recovery may only be effective when feedback goals are set higher, are personalised or have additional motivational context.


M. Wesseling C. Meyer K. Corten K. Desloovere I. Jonkers

Several studies have shown that gait kinematics[1–3] and hip contact forces (HCFs)[4, 5] of patients following total hip arthroplasty (THA) do not return to normal, although improvements in kinematics are found compared to the pre-surgery. However, the evolution of HCFs after surgery has not been investigated. The goal of this study is to evaluate HCFs during gait in OA patients before and at 2 evaluation moments post-THA.

Fourteen unilateral hip OA patients before and 3- and 12-months post-THA surgery walked at self-selected speed, as well as 18 healthy control subjects. 3D marker trajectories were captured using Vicon (Oxford Metrics, UK) and force data was measured using two AMTI force platforms (Watertown, MA). A musculoskeletal model consisting of 14 segments, 19 degrees of freedom and 88 musculotendon actuators and including wrapping surfaces around the hip joint was used[6]. All analyses were performed in OpenSim 3.1[7]. The model was scaled to the dimensions of each subject using the marker positions of a static pose. A kalman smoother procedure was used to calculate joint angles[8]. Muscle forces were calculated using static optimization, minimizing the sum of squared muscle activations. HCFs were calculated and normalized to body weight (BW). First and second peak HCFs were determined and used for statistical analysis. To determine differences between HCFs of OA patients at the different evaluation moments, a Friedman test was used. In case of a significant difference, post-hoc rank-based multiple comparison tests with a Bonferonni adjustment was used. To compare controls and patients at each evaluation moment separate Man-Whitney U tests were used. Differences in HCFs between the affected and non-affected legs were expressed by a symmetry index (SI), i.e. the ratio between the HCFs of the affected leg over the non-affected leg, averaged over the stance phase of the gait cycle.

At the first and second HCF peaks, no significant differences were found between pre-, 3- and 12-months post-surgery (first peak average HCF: 2.68, 2.72 and 2.78BW respectively; second peak average HCF: 3.21, 3.83 and 3.77BW respectively). Compared to controls, significant differences are found for all evaluation moments at the first and second HCF peaks (average HCF controls: 3.43 and 5.15BW respectively). The SI was below 1 pre- and 3-months post-surgery (0.88 and 0.85 respectively), indicating decreased loading of the affected compared to the non-affected leg. At 12-months post-surgery SI was close to 1 (0.98).

As reported before[4, 5], first or second peak HCFs do not return to normal after THA. Although HCFs increase after THA compared to pre-surgery, significant differences with controls remain. Surprisingly, no significant differences are found between the different evaluation moments of the patients, indicating no clear improvements are found after THA. Further, average HCF peaks at 3- and 12-months post-surgery are similar, indicating no further improvements are found 3-months post-surgery. However, the SI was above or close to 1 at 12-months post-surgery, indicating hip loading evolved to a more symmetrical loading 12-months post-surgery.


M.K. Gislason A. Menichetti K. Edmunds T. Hermannsson H. Jonsson L. Esposito P. Bifulco M. Cesarelli M. Fraldi P. Garigiulo

Many surgical decisions taken in the operating theatre are based on the experience and the expertise of the surgeon. Using biomechanical and computational data can provide additional information for the surgeon. By carrying out biomechanical trials pre-operatively as well as a full three dimensional analysis of the skeletal structure of the patient, it is possible to provide the surgeon with clinical data that can support the decision making with regards of fixation method, type of implant and size to name a few. In the presented project a description is provided of the pre-operative assessment of primary total hip patients in Iceland and how the analysis is helping to prevent periprosthetic fractures.

Over 70 patients undergoing primary total hip arthroplasty in Iceland were recruited for the study1. Gait analysis was performed on the patients using a pressure plate in conjunction with two synchronised video cameras. In addition, EMG was recorded from three muscles: Rectus femoris, Vastus lateralis and Vastus medialis on both the healthy and the operated leg. Finally the patient was CT-scanned with an in-plane resolution of 0.5mm and slice thickness of 1mm. Three dimensional objects of both the femur and muscles were created based on the scans. The material properties were derived from the Hounsfield units. Finite element analysis was carried out on the femur and the fracture risk of press fitting procedure was calculated and areas of weak points in the bone identified. Analysis was carried out on the muscles and the volume distribution between fat, connective tissue and muscle tissue calculated.

The results showed that basing fixation method on age and sex may not necessarily be a good indicator. The three dimensional bone mineral density distribution and the relative volume of cortical bone provided a better indication of which patients should receive cemented implant. Using a strain based failure criteria on the finite element models showed increased number in failed elements with decreased volume of cortical bone. The results of the biomechanical assessment for each patient were finally collected using an automatic report which was presented to the clinician.

Using biomechanical assessment and modelling can help identify an optimal treatment method for total hip patients by giving surgeons quantitative data on which they can build their decision making in the operating theatre. This can eventually lead to reduction in revisions and increased quality of life for the patient.


M. Lamontagne E. Kowalski D.S. Catelli P.E. Beaulé

Dual mobility (DM) bearing implants reduce the incidence of dislocation following total hip arthroplasty (THA) and as such they are used for the treatment of hip instability in both primary and revision cases. The aim of this study was to compare lower limb muscle activity of patients who underwent a total hip arthroplasty (THA) with a dual mobility (DM) or a common cup (CC) bearing compared to healthy controls (CON) during a sit to stand task.

A total of 21 patients (12 DM, 9 CC) and 12 CON were recruited from the local Hospital. The patients who volunteered for the study were randomly assigned to either a DM or a CC cementless THA after receiving informed consent. All surgeries were performed by the same surgeon using the direct anterior approach. Participants underwent electromyography (EMG) and motion analysis while completing a sit-to-stand task. Portable wireless surface EMG probes were placed on the vastus lateralis, rectus femoris, biceps femoris, semitendinosus (ST), gluteus medius and tensor fasciae latae muscles of the affected limb in the surgical groups and the dominant limb in the CON group. Motion capture was used to record lower limb kinematics and kinetics. Muscle strength was recorded using a hand-held dynamometer during maximal voluntary isometric contraction (MVIC) testing. Peak linear envelope (peakLE) and total muscle activity (iEMG) were extrapolated and normalized to the MVIC and time cycle for the sit to stand task. Using iEMG, quadriceps-hamstrings muscle co-activation index was calculated for the task. Nonparametric Kruskal Wallace ANOVA tests and Wilcoxon rank sum tests were used to identify where significant (p < 0.05) differences occurred.

The DM group had greater iEMG of the ST muscle compared to the CC (p=0.045) and the CON (p=0.015) groups. The CC group had lower iEMG for hamstring muscles compared to the DM (p=0.041) group. The DM group showed lower quadriceps-hamstrings co-activation index compared to the CON group and it approached significance (p=0.054). The CC group had greater anterior pelvis tilt compared to both DM (p=0.043) and the CON (p=0.047) groups. The DM also had larger knee varus angles and less knee internal rotation compared to both groups, however this never reached significance. No significant differences in muscle strength existed between the groups.

Higher ST muscle activity in the DM group is explained by the reduction in internal rotation at the knee joint as the ST muscle was more active to resist the varus forces during the sit-to-stand task. Reduced quadriceps activity in the CC group is explained by increased pelvic anterior tilt as this would shorten the moment arm and muscle length in the quadriceps, ultimately reducing quadriceps muscle activity. The reduced co-activation between quadriceps and hamstrings activity in the DM group compared to the CC and CON groups is related to better hip function and stability. Combining lower co-activation and larger range of motion for the DM group without impingement, this implant seems to offer better prevention against THA subluxation and less wear of the implant.


M. Brevadt A. Wiik A. Aqil H. Johal C. Van Der Straeten J. Cobb

Financial and human cost effectiveness is an increasing evident outcome measure of surgical innovation. Considering the human element, the aim is to restore the individual to their “normal” state by sparing anatomy without compromising implant performance. Gait lab studies have shown differences between different implants at top walking speed, but none to our knowledge have analysed differing total hip replacement patients through the entire range of gait speed and incline to show differences. The purpose of this gait study was to 1) determine if a new short stem femoral implant would return patients back to normal 2) compare its performance to established hip resurfacing and long stem total hip replacement (THR) implants.

110 subjects were tested on an instrumented treadmill (Kistler Gaitway, Amherst, NY), 4 groups (short-stem THR, long-stem THR, hip resurfacing and healthy controls) of 28, 29, 27, and 26 respectively. The new short femoral stem patients (Furlong Evolution, JRI) were taken from the ongoing Evolution Hip trial that have been tested on the treadmill with minimum 12months postop. The long stem total hip replacements and hip resurfacing groups were identified from out 800 patient gait database. They were only chosen if they were 12 months postop and had no other joint disease or medical comorbidities which would affect gait performance.

All subjects were tested through their entire range of gait speeds and incline after having a 5 minute habituation period. Speed intervals were at 0.5kms increments until maximum walking speed achieved and inclines at 4kms for 5, 10, 15%. At all incremental intervals of speed, the vertical component of the ground reaction forces, center of pressure and temporal measurements were collected for both limbs with a sampling frequency of 100Hz. Body weight scaling was applied to correct for mass differences and a symmetry index to compare the implanted hip to the contralateral normal hip. All variables for each subject group were compared to each other using an analysis of variance (ANOVA) with Tukey post hoc test with significance set at α=0.05.

The four experimental groups were reasonably matched for demographics and the implant groups for PROMs. Hip resurfacing had a clear top walking speed advantage, but when assessing the symmetry index on all speeds and incline, all groups were not significantly different. Push-off and step length was statistically less favourable for the short/long THR group (p=0.005–0.05) depending on speed/incline.

The primary aim of this study was determine if implant design affected gait symmetry and performance. Interestingly, irrespective of implant design, symmetry with regards to weight acceptance, impulse, push-off and step length was returned to normal when comparing to healthy controls. However individual implant performance on the flat and incline, showed inferior (p<0.05) push-off force and step length in the short stem and long stem THR groups when compared to controls. Age and gender may have played a part for the short stem group. It appears that the early gait outcomes for the short stem device are promising. Assessment at the 3 year mark should be conclusive.


E. Lenguerrand M. Whitehouse V. Wylde R. Gooberman-Hill A. Blom

Patients report similar or better pain and function before revision hip arthroplasty than before primary arthroplasty but poorer outcomes after revision surgery. The trajectory of post-operative recovery during the first 12 months and any differences by type of surgery have received little attention. We explored the trajectories of change in pain and function after revision hip arthroplasty to 12-months post-operatively and compared them with those observed after primary hip arthroplasty.

We conducted a single-centre UK cohort study of patients undergoing primary (n = 80) or revision (n = 43) hip arthroplasty. WOMAC pain and function scores and 20-metres walking time were collected pre-operatively, at 3 and 12-months post-operatively. Multilevel regression models were used to chart and compare the trajectories of post-operative change (0–3 months and 3–12 months) between the types of surgery.

Patients undergoing primary arthroplasty had a total hip replacement (n=74) or hip resurfacing (n=6). Osteoarthritis was the indication for surgery in 92% of primary cases. Patients undergoing revision arthroplasty had revision of a total hip arthroplasty (n=37), hemiarthroplasty (n=2) or hip resurfacing (n=4). The most common indication for revision arthroplasty was aseptic loosening (n=29); the remaining indications were pain (n=4), aseptic lymphocyte-dominated vasculitis-associated lesion (n=4) or other reasons (n=6). Primary (87%) and revision arthroplasties (98%) were mostly commonly performed via a posterior surgical approach.

The improvements in pain and function following revision arthroplasty occurred within the first 3-months following operation (WOMAC-pain, p<0.0001; WOMAC-function, p<0.0001; timed 20-metres walk, p<0.0001) with no evidence of further change beyond this initial period (p>0.05)

While the pattern of recovery after revision arthroplasty was similar to that observed after primary arthroplasty, improvements in the first 3-months were smaller after revision compared to primary arthroplasty (p<0.0001). Patients listed for revision surgery reported lower pre-operative pain levels (p=0.03) but similar post-operative levels (p=0.268) compared to those undergoing primary surgery. At 12-months post-operation patients who underwent a revision arthroplasty had not reached the same level of function achieved by those who underwent primary arthroplasty (WOMAC-function p=0.015; Time walk p=0.004).

Patients undergoing revision hip arthroplasty should be informed that the majority of their improvement will occur in the first 3-months following surgery and that the expected improvement will be less marked than that experienced following primary surgery. More research is now required to 1.) identify whether specific in-patient and post-discharge rehabilitation tailored towards patients undergoing revision arthroplasty would improve or achieve equivalent outcomes to primary surgery and 2.) whether patients who are achieving limited improvements at 3-months post-operative would benefit from more intensive rehabilitation. This will become all the more important with the increasing volume of revision surgery and the high expectations of patients who aspire to a disease-free and active life.


E. Auvinet F. Multon V. Manning J. Cobb

Osteoarthritis and the pain associated with it result in gait pattern alteration, in particularly gait asymmetry when the disease is unilateral [1–2]. The quantification of such asymmetry could assist with the diagnosis and follow up. Various asymmetry indices have been proposed to compare the spatiotemporal, kinematic and kinetic parameters of lower limbs during the gait cycle. One, the Continuous Relative Phase [3] compares the joints angle and its derivatives to assess the gait asymmetry during the gait cycle. However, the indices rely on marker based gait measurement systems that are costly and generally require manual examination, calibration procedures and the precise placement of sensors/markers on the body of the patient.

To overcome these issues, a new asymmetry index was proposed in [4]. It uses an inexpensive, easy-to-use and markerless depth camera (Microsoft Kinect™) output. Without requiring joint localization, it directly uses depth images provided by the Kinect™. It is based on the longitudinal spatial difference between lower-limb movements averaged during several gait cycles. To evaluate the relevance of this index ILong, its sensitivity versus the position of the sensor and the sensitivity versus the number of gait cycle, fifteen healthy subjects were tested on a treadmill walking normally and with an artificially induced gait asymmetry created by placing a thick sole under one shoe. The gait movement was simultaneously recorded using two Kinects™, one placed in front of and another behind the subject, and a motion capture system.

The Continuous Relative Phase computed with the Kinect™ skeleton failed to assess gait asymmetry. With the Kinect™ placed in front of and behind the patient the proposed longitudinal index distinguished the asymmetrical gait (p<0.001). Moreover, the correlation coefficient between the index measured by Kinect™ and the ground truth of this index measured by motion capture is more than .85 when using one stride and reaches .90 when using at least five strides.

This gait asymmetry index measured with a Kinect™ is low cost, easy to use and is a promising development for clinical gait analysis for Osteoarthritis disease diagnostic and follow up.


Y. Goërtz I. Buil I. Jochem W. Sipers M. Smid I. Heyligers B. Grimm

Falls and fall-related injuries can have devastating health consequences and form a growing economic burden for the healthcare system. To identify individuals at risk for preventive measures and therapies, fall risk assessment scores have been developed. However, they are costly in terms of time and effort and rely on the subjective interpretation of a skilled professional making them less suitable for frequent assessment or in a screening situation.

Small wearable sensors as activity monitor can objectively provide movement information during daily-life tasks. It is the aim of this study is to evaluate whether the activity parameters from wearable monitors correlate with fall risk scores and may predict conventional assessment scores.

Physical activity data were collected from nineteen home-dwelling frail elderly (n=19, female=10; age=81±5.6 years, GFI=5.4±1.9, MMSE=27.4±1.5) during waking hours of 4 consecutive days, wearing a wearable 9-axis activity monitor (56×40×15mm, 25g) on the lateral side of the right thigh. The signal was analysed using self-developed, previously validated algorithms (Matlab) producing the following parameters: time spent walking, step count, sit-stand-transfer counts, mean cadence (steps/min), count of stair uses and intensity counts >1.5G.

Conventional fall risk assessment was performed using the Tinetti sore (range: 0–28=best), a widely used tool directly determining the likelihood of falls and the Short Physical Performance Battery (SPPB, range: 0–12=best) which measures lower extremity performance as a validated proxy of fall risk. The anxiety to fall during activities of daily living was assessed using the self-reported Short Falls Efficacy Scale-International (FES-I, range: 7–28=worst).

Correlations between activity parameters and conventional scores were tested using Pearson's r.

The activity parameters (daily means) for the 19 participants were 70.8min (SD=28.7; min-max= 22.8–126.6) of walking, 4427 steps (SD=2344; min-max= 1391–8269) with a cadence 79.3 steps per minute (SD=17.1; min-max=52.8–103.9) and 33.3 sit-stand transfers (SD=9.7; min-max=8.8–48.0).

The average Tinetti score was 21.2 (SD=5.1; min-max=10.0–27.0), with SPPB scoring 7.8 (SD=2.4; min-max=3.0–12.0), and FES-I 4.6 (SD=5.1; min-max=7.0–23.0).

Strong (r≥0.6) and significant correlations existed between the walking cadence and the Tinetti (r=.60, p=<.01) and SPPB (r=.71, p=<.01) scores. No other correlations were found between the activity parameters and the Tinetti, SPPB and none with the psychological FES-I questionnaire.

Conventional fall risk scores and activity data are comparable to literature values and thus representative of home-dwelling frail elderly including a wide range covered for both dimensions.

No quantitative activity measure had a predictive value for fall risk assessment. Strongly correlated with Tinetti and SPPB, objectively measured cadence as a qualitative parameter seems a useful parameter for remotely identifying fall risk in frail elderly. The perceived anxiety to falls was not correlated to quantitative and qualitative activity parameters suggesting that this psychological aspect hardly affects activity.

Wearable activity monitors seem a valid tool to assess fall risk remotely and thus allow low cost, frequent and large group screening of frail elderly towards a health economically viable tool for a growing societal need. The predictive quality of activity monitored data may be increased by deriving additional qualitative measures from the activity data.


H. Boey T. Natsakis C. Van Dijck W. Coudyzer G. Dereymaeker I. Jonkers J. Vander Sloten

Four-dimensional computed tomography (4DCT: three dimensional + time) allows to measure individual bone position over a period of time usually during motion. This method has been found useful in studying the joints around the wrist as dynamic instabilities are difficult to detect during static CT scans while they can be diagnosed using a 4DCT scan [1]–[3]. For the foot, the PedCAT system (Curvebeam, Warrington, USA) has been developed to study the foot bones under full weight bearing, however its use is limited to static images. On the contrary, dynamic measurements of the foot kinematics using skin markers can only describe motion of foot segments and not of individual bones. However, the ability to measure individual bone kinematics during gait is of paramount importance as such detailed information could be used to detect instabilities, to evaluate the effect of joint degeneration, to help in pre-operative planning as well as in post-operative evaluation.

The overall gait kinematics of two healthy volunteers were measured in a gait analysis lab (Movement Analysis Lab Leuven, Belgium) using a detailed foot-model (Oxford foot model, [4]). The measured plantar-dorsiflexion and in-eversion were used to manipulate their foot during a 4D CT acquisition. The manipulation was performed through a custom made foot manipulator that controls the position and orientation of the foot bed according to input kinematics. The manipulator was compatible with the 4D CT Scanner (Aquilion One, Toshiba, JP), and a sequence of CT scans (37 CT scans over 10 seconds with 320 slices for each scan and a slice thickness of 0.5 mm) was generated over the duration of the simulation. The position of the individual bones was determined using an automatic segmentation routine after which the kinematics of individual foot bones were calculated. To do so, three landmarks were tracked on each bone over time allowing to construct bone-specific coordinate frames. The motion of the foot bed was compared against the calculated kinematics of the tibia-calcaneus as the angles between these two bones are captured with skin markers.

There is high repeatability between the imposed plantar/dorsiflexion and inversion/eversion and the calculated. Although the internal/external rotation was not imposed, the calculated kinematics follow the same pattern as the measured in the gait-analysis lab. Based on the validation of the tibia-calcaneus, the kinematics were also calculated between four other joints: tibia-talar, talar-calcaneus, calcaneus-cuboid and talar-navicular. Repeatable measurements of individual foot bone motion were obtained for both volunteers.

The use of 4D CT-scanning in combination with a foot manipulator can provide more detailed information than skin marker-based gait-analysis e.g. for the study of the the tibia-talar joint. In the future, the foot manipulator will be tested for its sensitivity for specific pathologies (e.g. metatarsal coalition) and will be further developed to better resemble a real-life stance phase of gait (i.e. to include isolated heel contact and toe off).


I. Buil S. Ahmadinezhad Y. Göertz M. Lipperts I. Heyligers B. Grimm

Besides eliminating pain, restoring activity is a major goal in orthopaedic interventions including joint replacement or trauma surgery following falls in frail elderly, both treatments of highest socio-economic impact.

In joint replacement and even more so in frail elderly at risk of falling, turns are assessed in clinical tests such as the TUG (Timed Get-up-and-Go), Tinetti, or SPPB so that classifying turning movements in the free field with wearable activity monitors promises clinically valuable objective diagnostic or outcome parameters.

It is the aim of this study to validate a computationally simple turn detection algorithm for a leg-worn activity monitor comprising 3D gyroscopes.

A previously developed and validated activity classification algorithm for thigh-worn accelerometers was extended by adding a turn detection algorithm to its decision tree structure and using the 3D gyroscope of a new 9-axis IMU (56×40×15mm, 25g, f=50Hz,).

Based on published principles (El-Gohary et al. Sensors 2014), the turn detection algorithm filters the x-axis (thigh) for noise and walking (Butterworth low-pass, 2ndorder with a cut-off at 4Hz and 4thorder with a cut-off at 0.3Hz) before using a rotational speed threshold of 15deg/s to identify a turn and taking the bi-lateral zero-crossings as start and stop markers to integrate the turning angle.

For validation, a test subject wore an activity monitor on both thighs and performed a total of 57 turns of various types (walking, on-the-spot, fast/slow), ranges (45 to 360deg) and directions (left/right) in free order while being video-taped. An independent observer annotated the video so that the algorithmic counts could be compared to n=114 turns. Video-observation was compared to the algorithmic classification in a confusion matrix and the detection accuracy (true positives) was calculated.

In addition, 4-day continuous activity measures from 4 test subjects (2 healthy, 2 frail elderly) were compared.

Overall, only 5/114 turns were undetected producing a 96% detection accuracy. No false positives were classified. However, when detection accuracy was calculated for turning angle intervals (45°: 30–67.5°; 90°: 67.5–135°; 180°: 135–270°; 360°: 270–450°), accuracy for all interval classifications combined dropped to 83.3% with equal values for left and right turns. For the 180° and 360°, accuracy was 100% while for the shorter 45° and 90° turns accuracy was 75% and 71% only, mainly because subsequent turns were not separated.

Healthy subjects performed between 470 (office worker) and 823 (house wife) turns/day while frail elderly scored 128 (high fall risk) to 487 turns/day (low fall risk). Turns/day and steps/day were not correlated. In healthy subjects ca. 50% of turns were in the 45° category compared to only ca. 35% in frail elderly.

Turn detection for a thigh-worn IMU activity monitor using a computationally simple algorithm is feasible with high general detection accuracy. The classification and separation of subsequent short turns can be further improved.

In multi-day measurement, turns/day and the distribution of short and long turns seem to be a largely independent activity parameter compared to step counts and may improve objective assessment of fall risk or arthroplasty outcome.


M. Stefanou D. Pasparakis N. Darras P. Papagelopoulos

Many studies describe the use of the Ilizarov ring fixator for lower limb lengthening and for the management of the 3-dimensional lower limb deformities in achondroplasia, and most confirm the efficacy of this technique. However, long term follow up of these achondroplastic patients is lacking. Most studies have focused on magnitude of lengthening, treatment time required and complications, but no study has analyzed the long term postoperative condition of these patients using an objective, functional method such as gait analysis.

Nineteen (19) achondroplastic patients, 12 males and 7 females, aged 19–38 years (mean 27.3 y) who have undergone tibia and femur lengthening, using the Ilizarov method, at the age of 9–19 years (mean 12.6 y), were evaluated 5–19 years (mean 10.1 y) after their last surgery, using 3-dimensional gait analysis. Nineteen (19) normal, height-matched subjects were used as controls. The VICON Nexus 8 Camera System was used to accurately measure spatiotemporal characteristics (walking velocity, stride length, step length, cadence) and kinematics (range of motion) of lower limb joints. Statistical comparison of deformity parameters between achondroplastic patients and normal population was done using the student t- test. A level of p<0.05 was considered statistically significant.

Walking velocity, step length and stride length were statistically significantly decreased (p<0.05) in achondroplastic patients compared to normal population values. The achondroplastic group presented with excessive anterior pelvic tilt (mean 21.9o± 7.3), excessive pelvic rotation (range 28.7o±7.8), decreased hip extension (mean 1.8o±10.1) and decreased plantar flexion (mean 17.1o±5.1) when compared to normal controls. There was no statistically significant difference in the knee kinematics between the operated achondroplastic patients and normal controls.

The achondroplastic patients present decreased values in their spatiotemporal characteristics compared to the normal subjects because, despite the height gain, their lower limbs remain shorter. Their excessive anterior pelvic tilt is attributed to their lordosis. Their excessive forward pelvic rotation is an attempt to increase stride and step length. The decreased hip extension is due to their anterior pelvic tilt. The correction of these patients genu varum restored knee kinematics to normal. In order to address the hip and pelvis deformities a proximal femoral osteotomy should be considered.

The Ilizarov method provides functional height gain and substantially corrects the three-dimensional lower limb deformities of achondroplastic patients especially around the knee joint but more planning needs to be implemented when the system is applied to correct the disease specific deformities of the hip and pelvis. Gait analysis is an objective tool that can be used to address these design issues.


C. Belvedere S. Siegler A. Ensini P. Caravaggi S. Durante A. Leardini

Total ankle replacement (TAR) is the main surgical option in case of severe joint osteoarthritis. The high failure rate of current TAR is often associated to inappropriate prosthetic articulating surfaces designed according to old biomechanical concepts such the fixed axis of rotation, thus resulting in non-physiological joint motion. A recent image-based 3D morphological study of the normal ankle (Siegler et al. 2014) has demonstrated that the ankle joint surfaces can be approximated by a saddle-shaped cone with its apex located laterally (SSCL). We aimed at comparing the kinematic effects of this original solution both with the intact joint and with the traditional prosthetic articulating surfaces via in-silico models and in-vitro measurements.

Native 3D morphology of ten normal cadaver ankle specimens was reconstructed via MRI and CT images. Three custom-fit ankle joint models were then developed, according to the most common TAR designs: cylindrical, symmetrically-truncated medial apex cone (as in Inman's pioneering measures), and the novel lateral apex cone, i.e. SSCL. Bone-to-bone motion, surface-to-surface distance maps, and ligament forces and deformations were evaluated via computer simulation. Prototypes of corresponding prosthesis components were designed and manufactured via 3D-printing, both in polymer-like-carbon and in cobalt-chromium-molybdenum powders, for in-vitro tests on the cadaver specimens. A custom testing rig was used for application of external moments to the ankle joint in the three anatomical planes; a motion tracking system with trackers pinned into the bone was used to measure tibial, talar and calcaneal motion (Franci et al. 2009), represented then as tibiotalar, subtalar and ankle complex 3D joint rotations. Each ankle specimen was tested in the intact joint configuration and after replacement of the articulating surfaces according with the three joint models: cylindrical, medial apex cone and SSCL.

Results. Small intra-specimen data variability in cycle-to-cycle joint kinematics was found in all cadaver ankles, the maximum standard deviation of all rotation patterns being smaller than 2.0 deg. In-silico ligament strain/stress analysis and in-vitro joint kinematic and load transfer measurements revealed that the novel SSCL surfaces reproduce more natural joint patterns than those with the most common surfaces used in current TAR.

TAR based on a saddle-shaped skewed truncated cone with lateral apex is expected to restore more normal joint function. Additional tests are undergoing for further biomechanical validation. The present study has also demonstrated the feasibility and the quality of the full process of custom TAR design and production for any specific subject. This implies a thorough procedure, from medical imaging to the production of artificial surfaces via 3D printing, which is allowing for personalised implants to become the future standard in total joint replacement.


J. Meessen F. Saberi Hosnijeh J. Wesseling E. Slagboom A. Uitterlinden R. Nelissen J. van Meurs I. Meulenbelt

Osteoarthritis (OA) is a prevalent, age-related joint disease, characterized by diverse progressive changes in articular cartilage and subchondral bone. Disease management is severely hampered by the absence of tools to classify patients based on underlying disease mechanisms. For that matter, increased BMI is a known risk factor for OA in the weight bearing knee joint, but also for hand OA.1The increased risk for OA is therefore thought to be influenced by systemic factors accompanying BMI. It was hypothesized that differences in metabolic state could be underlying OA phenotypes. In the current study we set out to explore the potential role of a large range of metabolites in blood as sensitive biomarker of OA.

Plasma samples were taken from the Rotterdam Study, CHECK-, GARP/NORREF- and the LUMC-arthroplasty cohorts. OA was defined as having had arthroplasty for primary OA, stratified per location (any, hip or knee). In total 647 persons with Total Joint Arthroplasty (TJA) were included and 2125 persons were considered as controls (i.e. they had a Kellgrenn-Lawrence Score of <2 indicating no radiographic OA was present) in any of the studied joints. A total of 231 different metabolites were assessed by using the BrainShake NMR platform. Since parts of the metabolites were highly correlated, we used Principal Component Analyses (PCA) to reduce the data. 23 factors were identified, accounting for 91,4% of the variance in the data. Logistic regression models were applied to investigate the identified factors for their association to arthroplasty for primary OA, independent of age, sex, BMI and cholesterol-lowering medication (statins).

The models showed two different factors robustly associated to arthroplasty as result of primary OA. A table represents the associations of these factors to arthroplasty adjusted for age, sex and BMI, as the information on statin-use was not known for all subjects. Analyses showed that additional correction for statins did not change the results. When stratifying the arthroplasty phenotypes for joint location, factor 11, characterized by e.g. linoleic acid, was found to be associated to arthroplasty in the hip (THA). Similarly, Factor 22, representing saturated fatty acids and degree of unsaturation, was consistently associated with arthroplasty, independent of the site. When analyzing the metabolites involved in the factors individually these associations were confirmed for most contributors of the factors, except the ratio of saturated fatty acids to total fatty acids.

Our preliminary analyses showed that persons with arthroplasty for primary OA compared to controls have different values for factors composed for fatty acids. The identification of groups of fatty acid metabolites as being connected to OA phenotypes indicates an inflammation driven pathway which might give a better understanding of the mechanisms behind OA.


J. Favre H. Babel P. Omoumi B. Jolles

Knee osteoarthritis (OA) affects an estimated 250 million people worldwide, with a cure yet to be found. Consequently, there is an urgent need to improve our understanding of OA physiopathology. While knee OA has long been mostly described as a loss of cartilage thickness (CTh) and research has focused on this characteristic, the role of bone alterations is rapidly gaining in interest. Analyzing subchondral bone mineral density (sBMD) is particularly interesting because this could inform on the mechanical environment at the knee. However, there is a paucity of data on sBMD in literature mainly because of the lack of prior methods to measure this parameter. A method for 3D sBMD assessment based on computed tomography (CT) scans was recently proposed, thus allowing testing for sBMD differences in knee OA. This study aimed at comparing non-OA and medial OA knees in terms of tibial sBMD and CTh. Specifically, it was hypothesized that sBMD and CTh differ with OA.

Ten knees with severe medial OA and 10 matched non-OA knees were analyzed after ethical approval (50% male; 60 ± 3 years old). The arthro-CT scans of the 20 knees were segmented using custom software to build 3D mesh models of the tibial bone and cartilage. CTh maps were obtained by calculating the distance between cartilage and bone meshes, while sBMD maps were calculated based on the intensity of the CT in the first 3mm of bone. For each knee, the average CTh and sBMD values over the entire medial and lateral compartments were calculated and used to determine the medial-to-lateral (M/L) CTh and sBMD ratios. Unpaired t-tests and receiver operating characteristic (ROC) were used for statistical analysis.

The M/L sBMD ratio was significantly higher in OA compared to non-OA knees (1.14 ± 0.04 vs. 1.08 ± 0.03; p<0.01), whereas the CTh ratio was not significantly different between groups (0.70 ± 0.21 vs. 0.85 ± 0.10; p=0.06). No significant differences were found between OA and non-OA knees for the average medial CTh and sBMD (p>0.4). High classification performance was obtained for the sBMD ratio and low performance for the average sBMD in the medial compartment (areas under the ROC curve of 0.9 and 0.6, respectively). CTh ratio and medial compartment average provided medium classification performances (areas under the curve of 0.7).

This study showed that sBMD differed between non-OA and severe medial OA knees and that sBMD M/L ratio was more sensitive to OA severity than CTh variables. These results brought new insights into the pathogenesis of knee OA, by supporting the idea that sBMD is altered with OA and suggesting that sBMD could play a role in disease development. Indeed, the mechanical stresses on the cartilages are related to the mechanical characteristics of the bones. Indirectly, this study also demonstrated the value of arthro-CT scans to simultaneously assess sBMD and CTh. Additional studies with larger cohorts of patients at different stages of the disease are necessary to better understand when changes in sBMD occur.


U.T. Timur M. Caron T. Welting H. Weinans A. van der Windt P. Emans H. Jahr

As cartilage has poor intrinsic repair capacity, in vitroexpansion of human articular chondrocytes (HACs) is required for cell-based therapies to treat cartilage pathologies. During standard expansion culture (i.e. plasma osmolarity, 280 mOsm) chondrocytes inevitably lose their specific phenotype and de-differentiate, which makes them inappropriate for autologous chondrocyte implantation. It has been shown that physiological osmolarity (i.e. 380 mOsm) increases collagen type II (COL2) expression in vitro, but the underlying molecular mechanism is unknown. Transforming growth factor beta (TGFβ) super family members are accepted key regulators of chondrocyte differentiation and known to stimulate COL2 production. In this study we aimed to elucidate the role of TGFβ superfamily member signalling as a molecular mechanism potentially driving the COL2 expression under physiological (380 mOsm) culture conditions.

HACs from OA patients (p1) were cultured in cytokine-free medium of 280 or 380 mOsm, under standard 2D in vitroconditions, with or without lentiviral TGFβ2 knockdown (RNAi). Expression of TGFβ isoforms, BMPs and chondrocyte marker genes was evaluated by QPCR. TGFβ2 protein secretion was evaluated using ELISA and bioactivity was determined using an established reporter cell line. Involvement of BMP signaling was investigated by culturing OA HACs (p1) in the presence or absence of dorsomorphin (10 µM).

Physiological osmolarity increased TGFβ2 and TGFβ3 mRNA expression, TGFβ2 protein secretion as well as general TGFβ activity by 380 mOsm. Upon TGFβ2 isoform-specific knockdown COL2 mRNA expression was induced. TGFβ2 RNAi induced expression of several BMPs (e.g. BMP2,-4,-6) and this induction was enhanced in culture conditions with physiological osmolarity. Dorsomorphin inhibited physiological osmolarity induced COL2 mRNA expression.

TGFβ2 knockdown under 380 mOsm increases COL2 expression in human osteoarthritic chondrocytes in vitromost likely through a regulatory feedback loop via BMP signaling, which is involved in osmolarity-induced COL2 expression. Future studies will further elucidate the BMP-mediated regulatory feedback loop after TGF β2 knockdown and its influence on COL2 expression.


V. Dexheimer A. Aulmann J. Gabler K. Bomans K. Kynast G. Omlor W. Richter

Mesenchymal stromal cells (MSC) are multipotent, self-renewing cells that are an attractive cell source for cartilage regeneration strategies. While articular chondrocytes form stable cartilage-like tissue under chondrogenic in vitro conditions, a still unsolved problem of chondrocyte production from MSC is their endochondrol development leading to the formation of transient instead of stable articular cartilage. In order to identify relevant molecular determinants of chondrocyte redifferentiation versus MSC chondrogenesis and hypertrophy, this study assessed the differential expression of members of the transforming growth factor β (TGF-β) -superfamily, their receptors and antagonists between differentiating MSC and human articular chondrocytes (HAC).

Chondrogenesis of human MSC and redifferentiation of HAC was induced in micromass pellet culture. Gene expression of MSC (n=5) and HAC (n=5) was compared using a transcriptome analysis on Illumina platform. Functional regulation of relevant candidate molecules was assessed in independent MSC and HAC populations by qRT-PCR. Smad signalling during chondrogenic differentiation was analysed by immunohistochemistry and Western Blotting. BMP signalling in both populations was modulated by co-treatment with BMP-4/7 or an inhibitor of Smad1/5/9 signalling. Proteoglycan and DNA content, collagen type II and -X deposition, gene expression of chondrogenic and hypertrophic markers as well as alkaline phosphatase (ALP) activity were quantitatively assessed at different time points.

In HAC, TGF-β receptor 2 and 3 (TGFBR2/3) were up-regulated to significantly higher levels than in MSC. BMP4, expressed during HAC expansion, was suppressed while CHL2 and CHRD levels raised. In MSC, BMP4 and BMP7 were induced while TGFBR2 and TGFBR3 were down-regulated. Staining for pSmad1/5/9 in HAC demonstrated positive cells dispersed throughout the pellets at day 3 and 5 while lower pSmad1/5/9 immunostaining was observed in MSC. In HAC and MSC pellets pSmad staining decreased during chondrogenesis, in line with Western Blot results. Medium supplementation with BMP-4/7 did not improve cartilaginous matrix deposition by MSC but raised ALP-activity. When Smad1/5/9 phosphorylation was blocked in MSC culture by dorsomorphin treatment (day 14–42) COL2A1 and COL10A1 expression decreased significantly and collagen type II and type X deposition were reduced. ALP activity dropped to 12 % of control levels.

Inhibition of pSmad1/5/9 signalling was unattractive to shift chondrogenesis of MSC away from endochondral development since it unpaired SOX9 expression and strongly reduced cartilaginous matrix deposition along with hypertrophy. Thus no simple correlation exists between beneficial pSmad2/3 versus unwanted pSmad1/5/9 signalling during MSC chondrogenesis.


K. Deluzio S. Brandon A. Clouthier E. Hassan A. Campbell

Valgus unloader knee braces are a conservative treatment option for medial compartment knee osteoarthritis (OA). These braces are designed to reduce painful, and potentially injurious compressive loading on the damaged medial side of the joint through application of a frontal-plane abduction moment. While some patients experience improvements in pain, function, and joint loading, others see little to no benefit from bracing [1]. Previous biomechanical studies investigating the mechanical effectiveness of bracing have been limited in either their musculoskeletal detail [2] or incorporation of altered external joint moments and forces [3]. The first objective was to model the relative contributions of gait dynamics, muscle forces, and the external brace abduction moment to reducing medial compartment knee loads. The second objective was to determine what factors predict the effectiveness of the valgus unloading brace.

Seventeen people with knee OA (8 Female age 54.4 +/− 4.2, BMI 30.00 +/− 4.0 kg/m2, Kellgren-Lawrence range of 1–4 with med. = 3) and 20 healthy age-matched controls participated in this study which was approved by the institutional ethics review board. Subjects walked across a 20m walkway with and without a Donjoy OA Assist knee brace while marker trajectories, ground reaction forces, and lower limb electromyography were recorded. The external moment applied by the brace was estimated by multiplying the brace deformation by is pre-determined brace-stiffness. For each subject, a representative stride was selected for each brace condition. A generic musculokeletal model with two legs, a torso, and 96 muscles was modified to include subject-specific frontal plane alignment and medial and lateral contact locations [4]. Muscle forces, and tibiofemoral contact forces were estimated using static optimization [4]. We defined brace effectiveness as the difference in the peak medial contact force between the braced and the unbraced conditions. A stepwise regression analysis was performed to predict brace effectiveness based on: X-ray frontal plane alignment, medial joint space, KL grade, mass, WOMAC scores, unbraced walking speed, trunk, hip and knee joint angles and moments.

The OA Assist brace reduced medial joint loading by approximately 0.1 to 0.2 BW or roughly 10%, during stance. This decrease was primarily due to the external brace abduction moment, and not changes in gait dynamics, or muscle forces. The brace effectiveness could be predicted (R2=0.77) by the KL grade, and the magnitude of the hip adduction moment in early stance (unbraced). The brace was more effective for those that had larger hip adduction moments and for those with more severe OA.

The valgus knee brace was found to reduce the medial joint contact force by approximately 10% as estimated using a musculoskeletal model. Bracing resulted in a greater reduction in joint contact force for those who had more severe OA while still maintaining a hip adduction moment similar to that of healthy controls.


J.-P. Wu Z. Zhou X.-L. Zhao W. Xue J. Xu T.B. Kirk

The health of a synovial joint is relied on normal function and coordination of a group of tissues such as articular cartilage (AC), ligaments, tendons and muscles. Osteoarthritis (OA), which is the most common joint disease, is clinically characterised by lesion of AC. Despite this, injury of a ligament or tendon or muscle generates a joint instability, which accelerates deterioration of AC and progression of OA. Traditional histology is often used to study the pathology of biological tissues. It requires tissue biopsy, which traumatises the donor tissues. Therefore, it is not an idea method for assessing AC, ligaments and tendons as the tissues have a poor healing capability. There is a worldwide demand of an imaging technique that diagnoses the microstructural changes of chondral and connective tissues without biopsy. Confocal arthroscopy (Optiscan Pty Ltd, Australia) possesses a Ø 6.3 mm probe and offers a 0.7 µm lateral imaging resolution and 7 µm axial resolution. It has been successfully used for examining the internal microstructural disorders in rotator cuff tendons of human cadavers without tissue biopsy (WU et al., 2015). This study investigates the capability of confocal arthroscopy as optical histology for assessing the internal microstructure of AC, ligaments, tendons and muscles in a knee joint.

Four sheep keen joints were freshly donated by other research unrelated to this study. After 5 ml clinical grade fluorescein solution at 0.05 g/L was injected into the joint cavity of a knee joint, the joint was passively exercising for about 10 minutes. The joint was then open collaterally and washed thoroughly using PBS for acquiring the microstructure of AC, ligaments, tendons and muscles using the confocal arthroscopy.

Results: without biopsy, confocal arthroscopy offers an imaging resolution for onsite distinguishing the subtle microstructural difference of AC in the weight-bearing and non-weight bearing region. It also permitted visualising the hierarchical collagen structure in ligaments and tendons at a fibre level, and characterising the muscle nuclei, motor-neurons, moto-neuron synapse and striates of myofibres.

Confocal arthroscopy showed the early promise to act as optical histology for studying the microstructure of chondral and a range of connective tissues, which allows understand better the health status of a knee joint. Since a sheep knee joint is very small for operating a normal procedure of an arthroscopic examination, an open knee joint surgery was performed in this study to allow imaging the microstructure of AC and a range of connective tissues. This is accounted as a limitation in the study. Nevertheless, this study demonstrated the development of confocal arthroscopy may lead to optical histology of the internal microstructure of AC and a group of connective tissues, which offers understanding more comprehensively the healthy status of a knee joint.


E. Gallazzi N. Capuano S. Scarponi I. Morelli C.L. Romanò

Infection remains among the first reasons for failure of joint prosthesis. Currently, the golden standard for treating prosthetic joint infections (PJIs) is two-stage revision. However, two-stage procedures have been reported to be associated with higher costs and possible higher morbidity and mortality, compared to one-stage. Furthermore, recent studies showed the ability of a fast-resorbable, antibacterial-loaded hydrogel coating to reduce surgical site infections after joint replacement, by preventing bacterial colonization of implants. Aim of this study was then to compare the infection recurrence rate after a one-stage, cemenless exchange, performed with an antibacterial coated implant versus a standardized two-stage revision procedure.

In this two-center prospective study, 22 patients, candidate to revision surgery for PJI, were enrolled to undergo a one-stage revision surgery with cementless implants, coated intra-operatively with a fast-resorbable, antibiotic-loaded hyaluronan and poly-D,L-lactide based hydrogel coating (“Defensive Antibacterial Coating”, DAC, Novagenit, Italy). DAC was reconstructed according to manufacturer indications and loaded with Vancomycin or Vancomycin + Meropenem, according to cultural examinations, and directly spread onto the implant before insertion. This prospective cohort was compared with a retrospective series of 22 consecutive patients, matched for age, sex, host type, site of surgery, that underwent a two stage procedure, using a preformed, antibiotic-loaded spacer (Tecres, Italy) and a cementless implant. The second surgery, for definitive implant placing, was performed only after CRP normalization and no clinical sign of infection. Clinical, laboratory and radiographic evaluation were performed at 3, 6 and 12 months, and every 6 months thereafter. Infection recurrence was defined by the presence of a sinus tract communicating with the joint, or at least two among the following criteria: clinical signs of infections; elevated CRP and ESR; elevated synovial fluid WBC count; elevated synovial fluid leukocyte esterase; a positive cultural examination from synovial fluid; radiographic signs of stem loosening.

The two groups did not differ significantly for age, sex, host type and site of surgery (18 knees and 4 hips, respectively). The DAC hydrogel was loaded intra-operatively, according to cultural examination, with vancomycin (14 patients) or vancomycin and meropenem (8 cases). At a mean follow-up of 20.2 ± 6.3 months, 2 patients (9.1%) in the DAC group showed an infection recurrence, compared to 3 patients (13.6%) in the two-stage group. No adverse events associated with the use of DAC or radiographic loosening of the stem were observed at the latest follow-up months.

This is the first report on one-stage cementless revision surgery for PJI, performed with a fast-resorbable antibacterial hydrogel coating. Our data, although in a limited series of patients and at a relatively short follow-up, show similar infection recurrence rate after one-stage exchange with cementless, coated implants, compared to two-stage revision. These findings warrant further studies in the possible applications of antibacterial coating technologies to treat implant-related infections.


H.R. Mohammad A. Pillai

We describe a case series using calcium sulphate bio composite with antibiotics (Cerament/Stimulan) in treating infected metalwork in the lower limb.

Eight patients aged 22–74 (7 males, 1 female) presented with clinical evidence of infected limb metal work from previous orthopaedic surgery. Metal work removal with application of either cerement in 5 cases (10–20ml including 175mg–350mg gentamycin) or stimulan in 3 cases (10–20ml including either 1g vancomycin or clindamycin 1.2g or 100mg tigecycline) into the site was performed. Supplemental systemic antibiotic therapy (oral/intravenous) was instituted based on intraoperative tissue culture and sensitivity.

Four patients had infected ankle metalwork, 2 patients infected distal tibial metalwork and 2 had infected external fixators. Metal work was removed in all cases. The mean pre operative CRP was 15.8mg/l (range 1–56mg/l). The mean postoperative CRP at 1 month was 20.5mg/l (range 2–98mg/l). The mean pre op WCC was 7.9×109(range 4.7–10.5 ×109). Mean post op WCC at 1 month was 7.1×109(range 5.0–9.2×109). The organisms cultured included enterobacter, staphylococcus aureus, staphylococcus epidermidis, staphylococcus cohnii, stenotrophomonas, acinetobacter, group B streptococcus, enterococcus and escherichia coli. No additional procedures were required in any case. All surgical wounds went on to heal uneventfully. Infection control and union was achieved both clinically and radiologically in all cases.

Our results support the use of a calcium sulphate bio composite with antibiotic as an adjuvant for effective local infection control in cases with implant related bone sepsis. The technique is well tolerated with no systemic or local side effects. We believe that implant removal, debridement and local antibiotic delivery can minimise the need for prolonged systemic antibiotic therapy in such cases.


K. Thompson L. Freitag U. Eberli K. Camenisch D. Arens G. Richards V. Stadelmann F. Moriarty

This longitudinal microCT study revealed the osteolytic response to a Staphylococcus epidermidis-infected implant in vivoand also demonstrates how antibiotics and/or a low bone mass state influence the morphological changes in bone and the course of the infection.

Colonisation of orthopaedic implants with Staphylococcus aureusor S. epidermidisis a major clinical concern, since infection-induced osteolysis can drastically impair implant fixation or integration within bone. High fracture incidence in post-menopausal osteoporosis patients means that this patient group are at risk of implant infection. The low bone mass in these patients may exacerbate infection-induced osteolysis, or alter antibiotic efficacy. Therefore, the aims of this study were to examine the bone changes resulting from a S. epidermidisimplant infection in vivousing microCT imaging, and to determine if a low bone mass stateinfluences the course of the infection and the efficacy of antibiotic therapy. An in vivomodel system using microCT scanning [1], involving the implantation of either a sterile or a S. epidermidis-colonised PEEK screw into the proximal tibia of 24 week-old female Wistar rats, was used to investigate the morphological changes in bone following infection over a 28 day period. In addition, the efficacy of a combination antibiotic therapy (rifampin and cefazolin: administered twice daily from days 7–21 post-screw implantation) for affecting osteolysis was also assessed. A subgroup of animals was subjected to ovariectomy (OVX) at 12 weeks of age, allowing for a 12 week period for bone loss prior to screw implantation at 24 weeks. Bone resorption and formation rates, bone-implant contact and peri-implant bone volume in the proximity of the screw were assessed by microCT scanning at days 0, 3, 6, 9, 14, 20 and 28 days post-surgery. Following euthanasia at day 28, the implanted screw, bone and soft tissues were subjected to quantitative bacteriology as a measure of the efficacy of the antibiotic regimen. In non-OVX animals S. epidermidisinfection induced marked osteolysis, which peaked between 9 and 14 days post-screw implantation. Peak bone resorption was detected at day 6, before recovering to baseline levels at day 14. Infection also resulted in extensive deposition of mineralised tissue, initially within the periosteal region (day 9–14), then subsequently in the osteolytic region at day 20–28. Quantitative bacteriology indicated all non-OVX animals remained infected. Rifampin and cefazolin successfully cleared the infection in 5/6 non-OVX animals group although there was no difference observed in CT-derived bone parameters. OVX resulted in extensive loss of trabecular bone but this did not alter the temporal pattern of infection-induced osteolysis, or mineralised tissue deposition, which was similar to that observed in the non-OVX animals. Similarly, there was no difference in bacterial counts between non-OVX and OVX animals (39,005 colony-forming units (CFU) [range: 3,675–156,800] vs 37,665 CFU [range 3,250–84,000], respectively). Interestingly, antibiotic treatment was less effective in the OVX animals (3/5 remained infected), suggesting that antibiotics have reduced efficacy in OVX animals. This study demonstrates S. epidermidis-induced osteolysis displays a similar temporal pattern in both normal and low bone mass states, with comparable bacterial loads present within the localised infection site.


M.A. Pacha-Olivenza M.C. García-Alonso R. Tejero M.L. Escudero A.M. Gallardo Moreno M.L. González-Martín

Adhered bacteria on titanium surfaces are able to decrease its corrosion potential and impedance values at the lowest frequencies. This result points to the detrimental influence of the biofilm on the passive film formed on the surfaces, independently on the surface finishes.

Titanium is one of the most used metallic biomaterials for biological and implant applications. The spontaneous formation of a protective passive film around 2–5 nm thick, make titanium unique as a biomaterial for implants. Its composition has been described by a three-layer model: TiO2/Ti2O3/TiO and its stability is ultimately responsible for the success of osseointegrated titanium implants. The cases of breakdown of the protective passive film are associated with highly acidic environments induced by bacterial biofilms and/or inflammatory processes that lead to localized corrosion of titanium and, in extreme cases, implant failure. Bearing in mind that the surface design of a titanium implant is a key element involved in the healing mechanisms at the bone-implant interface, the surface modifications have sought to enhance the biomechanical anchorage of the implant and promote osseointegration at the cell-biomolecular level. However, little attention has been paid to the effects of these surface modifications in the microbiologically induced corrosion (MIC). The aim of this work is to evaluate the potential for MIC of titanium in the short term under viable bacterial cells of Streptococcus mutansas a representative microorganism of oral biofilm considered to be a highly cariogenic pathogen.

Discs of 64 mm2surface area of commercially pure titanium, grade 4, were supplied by Biotechnology Institute (BTI, Vitoria, Spain). Four surface treatments were studied: two acid etchings (low roughness, opN and high roughness, opV). In addition, acid etched plus anodic oxidation (opNT). For comparative purposes, two surface finishes have been included: high roughness – corresponding with sandblasting-large grit plus acid (SLA); and, as-machined titanium (mach). The oral strain used for assessing the biofilm formation on the corrosion behavior of Ti surfaces was Streptococus mutansATCC 25175, obtained from the Spanish Type Culture Collection (CECT). The study of MIC from Streptococcus mutanson surfaces of Ti was carried out in an electrochemical cell specifically designed and patented by some of the present authors [1]. A three set up configuration of the electrochemical cell was used in the experiments. The measurement of the corrosion potential and electrochemical impedance was performed at different periods of incubation of bacteria: 2, 7, 15, 21 and 28 days.

Out Slight but continuous decrease in the corrosion potential and impedance values at the lowest frequencies indicate the deleterious influence of the biofilm on the passive film formed on the surfaces, independently on the surface finishes.

This research suggests that the most appropriate surface modification for the dental implant portion at the bone level would be the acid etched of high roughness (opV) surface.


A.O. Inyang R. Dey T. Mutsvangwa S. Roche S. Sivarasu

The morphology of the proximal part of the humerus varies largely. Morphometric features characterizing the three-dimensional geometry of the proximal humerus have revealed a wide difference within individuals. These parameters include head size, radius of curvature, inclination angle, retroversion angle, offsets and neck-shaft angle. Different implant designs have been adapted so as to make provision for these anatomical variations. However, the optimal design criteria are yet to be established. Implant design is one of the main factors determining the success of Total Shoulder Arthroplasty (TSA) since slight modifications in the implant anatomy could have significant biomechanical effects. Therefore, this study investigates the three-dimensional morphometric parameters of the South African proximal humerus which will serve as a basis for designing a new Total Shoulder Prosthesis for the South African population.

Sixteen South African (SA) fresh cadaveric humeri (8 left, 8 right; 8 paired) were used in this study. The data consisted of 6 men and 2 women with ages ranging from 32 to 55 years (43.13 ±8.51). The humeri were scanned using a Computer Tomography (CT) scanner. The Digital Imaging and Communications in Medicine (DICOM) files from the CT data were imported into medical modelling software, MIMICS for reconstruction. The 3D reconstructed model of the humeri as an STL file was used for further processing.

The STL data were generated as a cloud of points in a CAD software, SolidWorks. These were then remodeled by defining the detailed Referential Geometric Entities (RGEs) describing the anatomical characteristics. Anatomical reference points were defined for the anatomical neck plane, the epiphyseal sphere and the metaphyseal cylinder. Also, axes were defined which comprises of the humeral head axis and the metaphyseal axis. Thereafter, the posterior offsets medial offsets and the inclination angles were measured based on the RGEs.

The posterior offset varied from 0.07 mm to 2.87 mm (mean 1.20 mm), the medial offset varied from 4.40 mm to 8.45 mm (mean 6.50 mm) while the inclination angle varied from 114.00º to 133.87º (mean 121.05º)

The outcome of the study showed that the shape and dimensions of the proximal humerus varies distinctively. The articular surface is not a perfect sphere and differs independently with respect to the inclination angles. In addition, variations were noticeable in the medial and lateral offsets.

The morphometric data on the African shoulder is very limited and this study will significantly contribute to the shoulder data repository for the SA population. The morphometric parameters measured in this study will be useful in designing a South African shoulder prosthesis that mimics the native shoulder hence eliminating post-surgical complications.


R. Dey W. Inyang T. Mutsvangwa J. Charilaou S. Roche S. Sivarasu

Total Shoulder Arthroplasty (TSA) is a solution to fixing shoulder complications and restoring normal shoulder functionality. Shoulder arthritis is one of the common indicators of TSA. Studies suggest that 15% and 7% of the total Rheumatoid Arthritis (RA) and Osteoarthritis (OA) patients respectively, in sub-Saharan Africa, have degenerated shoulders. These patients are implanted with a Total Shoulder Prosthesis (TSP). There are limited literature available on the morphometric features of African shoulders. Previous studies have indicated that differences in shoulder surface geometry of the European and African populations, exists. This study aims at identifying the structural differences of the humeral articulating surfaces between South African and Swiss data sets.

The South African data set included the Computerised Tomography (CT) scans of cadavers sourced from the University of Cape Town and the Swiss data set included the cadaver CT scans obtained from the SICAS Medical Image Repository. Sixty reconstructed models of humerus were generated from these scans of 30 (bilateral) healthy cadavers (15 South African and 15 Swiss) using Mimics®. The humeral articulating surfaces were separated from the shaft by performing in-silico surgery using SOLIDWORKS®, according to the guidelines provided orthopaedic surgeons. A Matlab code was generated to determine the superior-inferior (S-I) and the anterior-posterior (A-P) circular diameter and the peak points (PPs) of the articulating surfaces. The PPs were defined as the highest point on the articulating surface, which is most likely to be in contact with the glenoid.

The S-I diameter was found to be significantly greater (p<0.01) than the A-P diameter for both the data sets (average difference = 5.02mm). Both the average A-P and S-I diameter for the Swiss data set were significantly larger (p = 0.02 and p = 0.03) than the South African data set by 2.36 mm and 2.70 mm respectively. The PPs were found to lie at an off-set from the origin. in case of the Swiss data set the average PP lie on the superior-posterior (S-P) quadrant and for the South African data set the average PP was found to lie on the anterior-inferior (A-I) quadrant. The A-P variation on the position of PP was highly significant (p = 0.003).

The results obtained in this study sheds light on the observed morphological variations between the South African and Swiss data sets. The observed circular diameter values are similar to the literature. The observed results suggest that the average TSP needed for the Swiss data set would have been larger than the ones needed for the South African data set. PP is a novel feature which has not been studied extensively. The fact that the average Swiss data set PP lie in the S-P quadrant might suggest that these humeral heads are more retroverted and superiorly tilted when compared to the South African data set. These morphometric variations can play a major role in post-TSA kinematics. The future scope of this study is to highlight other morphometric variations, if any, for the gleno-humeral articulating surfaces.


M.B. Kuenzler K. Nuss A. Karol M. Schaer M. Hottiger S. Raniga B. von Rechenberg M.A. Zumstein

Disturbed muscular architecture, fatty infiltration and muscular atrophy remain irreversible in chronic rotator cuff tears (RCT) even after repair. Poly-[ADP-ribose]-polymerase 1 (PARP-1), a nuclear factor involved in DNA damage repair, has shown to be a key element in the up-regulation of early muscle inflammation, atrophy and fat deposition. We therefore hypothesized that the absence of PARP-1 would lead to a reduction in muscular architectural damage, early inflammation, atrophy and fatty infiltration subsequent to combined tenotomy and neurectomy in a PARP-1 knock-out mouse model.

PARP-1 knock-out (KO group) and standard wild type C57BL/6 (WT group) mice were randomly allocated into three different time points (1, 6 and 12 weeks, total n=72). In all mice the supraspinatus (SSP) and infraspinatus (ISP) tendons of the left shoulder were detached and the SSP muscle was denervated according to a recently established model. Macroscopic muscle weight analysis, retraction documentation using macroscopic suture, magnetic resonance imaging, immunohistochemistry gene expression analysis using real time qPCR (RTqPCR) and histology were used to assess the differences in muscle architecture, early inflammation, fatty infiltration and atrophy between knock out and wild type mice in the supraspinatus muscle.

The SSP did retract in both groups, however; the KO muscles and tendons retracted less than the WT muscles (2.1±21mm vs 3.4±0.41mm; p=0.02). Further assessment of muscle architecture demonstrated that the pennation angle was significantly higher in the KO groups at 6 and 12 weeks (28±5 vs 36±5 and 29±4 vs 34±3; p<0.0001). Combined Tenotomy and neurectomy resulted in a significant loss of muscle mass in both groups compared to the contralateral unoperated side (KO group 62±11% and WT group 52±11%, p=0.04) at 6 weeks. But at 12 weeks postoperatively, there was a significant increase in muscle mass to near normal levels in KO group compared to the WT group (14±6% and 42±7% lower muscle mass respectively; p<0.0001) and less fatty infiltration (12.5 ± 1.82% and 19.6 ± 1.96%, p=0.027). Immunohistochemistry revealed a significant decrease in the expression of inflammatory, apoptotic, adipogenic and muscular atrophy genes at both the 1 week and 6 weeks time points, but not at 12 weeks in the KO group compared to the WT group. This was confirmed by histology.

Our study is the first to show that knocking out PARP-1 leads to decreased loss of muscle architecture, early inflammation, fatty infiltration and atrophy after combined tenotomy and neurectomy of the rotator cuff muscle. Although the macroscopic muscles reaction to injury is similar in the first 6 weeks, its ability to regenerate is much greater in the PARP-1 group leading to a near normalization of the muscle substance and muscle weight, less retraction, and less fatty infiltration after 12 weeks.


M. Kuenzler H. Ihn M. Akeda M. McGarry M.A. Zumstein T.Q. Lee

Insufficiency of the lateral collateral ligamentous complex causes posterolateral rotatory instability (PLRI). During reconstruction surgery the joint capsule is repaired, but its biomechanical influence on elbow stability has not been described. We hypothesized that capsular repair reduces ROM and varus angle after reconstruction of the lateral collateral complex.

Six fresh frozen cadaveric elbow specimens were used. Varus laxity in supination, pronation and neutral forearm rotation with 1 Nm load and forearm rotaitonal range of motion (ROM) with 0.3 Nm torque were measured using a Microscribe 3DLX digitizing system (Revware Inc, Raleigh, NC). Each specimen was tested under four different conditions: Intact, Complete Tear with LUCL, RCL and capsule tear, LUCL/RCL reconstruction + capsule repair and LUCL/RCL reconstruction only. Reconstruction was performed according to the docking technique (Jones, JSES, 2013) and the capsule was repaired with mattress sutures. Each condition was tested in 30°, 60° and 90° elbow flexion. A two-way ANOVA with Tukey's post-hoc test was used to detect statistical differences between the conditions.

Total ROM of the forearm significantly increased in all flexion angles from intact to Complete tear (p<0.001). ROM was restored to normal in 30° and 60° elbow flexion in both reconstruction conditions (p>0.05). LUCL/RCL Reconstruction + capsule repair in 90° elbow flexion was associated with a significantly lower ROM compared to intact (p=0.0003) and reconstruction without capsule repair (p=0.015). Varus angle increased significantly from intact to complete tear (p<0.0001) and restored to normal in both reconstruction conditions (p>0.05) in 30° and 60° elbow flexion. In contrast varus angle was significantly lower in 90° elbow flexion in both reconstruction conditions compared to intact (both p<0.0001).

Reconstruction of the lateral collateral complex restores elbow stability, ROM and varus laxity independent of capsular repair. Over tightening of the elbow joint occurred in 90° elbow flexion, which was aggravated by capsular repair. Over all capsular repair can be performed without negatively affecting elbow joint mobility.


Y. Chevalier M. Pietschmann C. Thorwaechter O. Chechik E. Adar A. Dekel P. Mueller

Treatment of massive rotator cuff tears can be challenging. Previous studies with irreparable rotator cuff tears showed good clinical results of tendon healing with the arthroscopic insertion of a protective biodegradable spacer balloon filled with saline solution between the repaired tendon and the acromion [1,2], but so far no scientific evidence has showed how the device alters pressures over the repaired tendon. This biomechanical study investigated the effects of a spacer inserted in the subacromial space on pressures over the repaired rotator cuff tendon in passive motion cycles typical for post-operative rehabilitation routines.

Six human cadaveric shoulders were prepared with the humerus cut 15cm below the joint and embedded in a pot, while the scapula fixed at three points on a plate. A rotator cuff tear was simulated and repaired using a suture anchor and a Mason-Allen suture. The specimens were then mounted on a custom-made pneumatic testing rig to induce passive motion cycles of adduction-abduction (90–0°) and flexion-extension (0–40°) with constant glenohumeral and superior loads and tension is exerted on the supraspinatus tendon with weights. A pressure sensor was placed between the supraspinatus tendon and the acromion. After pressure measurements for 15 cycles of each motion type, the InSpace balloon (OrthoSpace, Inc, Israel) was inserted and the specimens tested and pressure measured again for 15 cycles. Statistically significant changes in peak pressures were then measured before and after balloon.

Peak pressures were measured near 90 degrees abduction. No statistical differences were observed for internal-external rotation before and after balloon-shaped subacromial spacer was inserted. Mean pressures in abduction-adduction were significantly reduced from 121.7 ± 9.5 MPa to 51.5 ± 1.2 MPa. Peak pressures after repair were 1171.3 ± 99.5 MPa and 1749.6 ± 80.7 MPa in flexion-extension and abduction-adduction motion, respectively, and significantly decreased to 468.7 ± 16.0 MPa and 535.1 ± 27.6 MPa after spacer insertion (p<0.0001).

The use of the spacer above the repaired tendon reduced peak pressures and distributed them more widely over the sensor during both abduction-adduction and flexion-extension motions and therefore can reduce the stress on the rotator cuff repair. The InSpace system may reduce the pressure on the repaired tendon, thus potentially protecting the repair. Further studies to investigate this phenomenon are warranted, in particular relating these changes to shoulder kinematics following tear repair and spacer insertion.


L. Osagie A. Sanghani-Kerai M. Coathup T. Briggs G. Blunn

Osteoporosis is characterised by an uncoupling of bone formation and resorption resulting in a net reduction in bone density. Stem cells derived from bone marrow in osteoporotic patients typically contain more adipocytes,. Intermittent Parathyroid hormone (iPTH), has been shown to cause the preferential differentiation of mesenchymal stem cells (MSCs) to osteoblasts. We isolated rat bone marrow derived MSCs, investigating the effect of iPTH on adipocyte differentiation.

MSCs were harvested from the femora of 6–10week oldWT rats and cultured to induce adipogenesis for 21 days. Subsequently, cells were continually cultured in adipogenic media, osteogenic media or in osteogenic media supplemented with PTH 1–34 either continuously or intermittently for 6hours in every 72hour cycle. ALP and Alizarin Red assessed osteogenic differentiation, and Oil Red O used to assess intracellular microdroplet formation. A student t-test was used to analyse results, and a p value<0.05 considered significant.

Quantitatively measurements of Alizarin Red staining significantly increased in all adipocytes grown in osteogenic media compared to the cells continually cultured in adipogenic media. Calcium phosphate deposition continued to increase significantly in these groups up to day 14. At day 14, Alizarin Red staining from cells cultured in iPTH were significantly higher than osteogenic media alone. ALP expression was significantly higher for cells cultured in osteogenic media and iPTH compared to adipogenic media at days 3–14. Expression peaked at day 7, at this timepoint cells cultured in iPTH expressed significantly more ALP than other groups. Oil Red O measurements were significantly reduced from days 7–14 for all osteogenic groups, this significance was greatest for the iPTH group at day 7.

iPTH increased the transdifferentiation of adipocytes derived from MSCs into osteoblasts, this effect was most significant after 7 days. Ultimately, the role of iPTH on adipocytes may lead to improved bone formation with many orthopaedic applications.


M. Palanca A.J. Bodey M. Giorgi M. Viceconti D. Lacroix L. Cristofolini E. Dall'Ara

DVC is a novel full-field and contactless measurement technique for calculating displacements and strains inside bones (Grassi and Isaksson 2015) through the comparison of 3D reconstructions (CT, micro-CT, MRI, etc.) from unloaded and loaded samples. Recent in zero-strain tests to estimate the measurement precision by applying a known state of strain (Palanca, Tozzi et al. 2015) suggested that DVC is suitable to identify regions where bone tissue is yielded (i.e. subjected to high strains). Conversely to reliably measure strain in the physiological range a severe compromise with spatial resolution is necessary (Dall'Ara, Barber et al. 2014, Palanca, Tozzi et al. 2015). In order to use DVC to explore the relationship between the local physiological strain and bone microarchitecture, an error lower than 200 microstrain (an order of magnitude lower than the mean strain) and a spatial resolution of the strain measurement lower than 100 μm is required. The aim of this work is to define if, and to what extend, high-quality images obtained by synchrotron radiation micro computed tomography (SR-μCT) improve the precision of a global DVC approach.

Cylindrical specimens of cortical and trabecular bone were extracted from a fresh bovine femur and embedded in acrylic resin. Both samples were scanned twice without any repositioning (‘repeated scantest’) at beamline l13–2 of Diamond Light Source (Oxford, UK). 4000 projections of 53 ms exposure were collected via fly-scanning with a CdWO4scintillator-coupled pco.edge 5.5 detector with 4× magnification and an effective pixel size of 1.6μm. Strains were evaluated using a global DVC approach (ShIRT-FE) in two cubic volumes of interest (VOI) of 1,000 voxels in side length, for each specimen, exploring a DVC spatial resolution from 16 to 498 μm. The precision of measurements was evaluated extracting a similar indicator to (Liu and Morgan 2007).

Precision improved with decreasing spatial resolution, confirming a trend similar to that obtained with ‘laboratory source’ μCT on similar specimens (Palanca, Tozzi et al. 2015). To obtain a precision of better than 200 microstrains the cortical and trabecular samples required spatial resolutions of 41 and 80 μm respectively. Comparing these results to those of previous studies, where similar specimens were scanned with ‘laboratory source’ μCT (effective voxel size of the order of ten μm) the errors were vastly reduced (approximately one order of magnitude). In fact, in order to obtain a precision of better than 200 microstrain, spatial resolutions of 550 (cortical) and 480 (trabecular) μm were needed (Dall'Ara, Barber et al. 2014).

This work showed that using high-quality tomograms obtained by synchrotron radiation μCT decreases the measurement uncertainties of a global DVC approach with respect to those obtained with laboratory source μCT. DVC could therefore be used with μCT data to evaluate displacement and strain in the physiological range with remarkable spatial resolution.


U.E. Pazzaglia T. Congiu V. Sibilia F. Pagani A. Benetti G. Zarattini

The study of the chondrocyte maturation cycle and endochondral ossification showed that the developing vascular supply has appeared to play a key role in determining the cortical or trabecular structure of the long bones.

The chondrocyte maturation cycle and endochondral ossification were studied in human, foetal cartilage anlagen and in postnatal meta-epiphyses. The relationship between the lacunar area, the inter territorial fibril network variations and CaP nucleation in primary and secondary ossification centres were assessed using light microscopy and SEM morphometry. The anlage topographic, zonal classification derived from the anatomical nomenclature of the completely developed long bone (diaphysis, metaphyses and epiphyses) allowed to follow the development of long bones cartilage model. A significant increase in chondrocyte lacunar area (p<0.001) was documented from the anlage epiphyseal zone 4 and 3 to zone 2 (metaphysis) and zone 1 (diaphysis), with the highest variation from zone 2 to zone 1. An inverse reduction in the intercellular matrix area (p<0.001) and matrix interfibrillar empty space (p<0.001) was also documented. These findings are consistent with the osmotic passage of free cartilage water from the interfibrillar space into the swelling chondrocytes, raising ion concentrations up to the critical threshold for mineral precipitation in the matrix. The mineralised cartilage served as a scaffold for osteoblasts apposition both in primary and secondary ossification centres and in the metaphyseal growth plate cartilage, but at different periods of bone anlage development and with distinct patterns for each zone. They all shared a common initial pathway, but it progressed with different times, modes and organisation in diaphysis, metaphysis and epiphysis. In the ossification phase the developing vascular supply has appeared to play a key role in determining the cortical or trabecular structure of the long bones.


A. Marrella A. Lagazzo F. Barberis F. Villa R. Quarto S. Scaglione

Hydrogels have been widely used for articular tissue engineering application, due to their controllable biodegradability and high water content mimicking the biological extracellular matrix. However, they often lack the mechanical support and signaling cues needed to properly guide cells. Graphene and its derivatives have recently emerged as promising materials due to their unique mechanical, physical, chemical proprieties [1]. Although not yet widely used for medical applications, preliminary works suggest that both structural and functional properties of polymeric substrates may be enhanced when combined with graphene oxide (GO) [2]. In this work, reinforced 3D GO/alginate (Alg) hydrogels have been realized and the opportunity of tuning hydrogels mechanical properties in relation to the required physiological needs has been investigated.

After preparing GO nanosheets (Sigma Aldrich) aqueous suspension (1 mg/ml) by ultrasonic treatment, alginate (Manugel GMB, FMC Biopolymer) composite solutions were produced (0, 0.5, 2 wt% GO/Alg). Moulds of agarose (1% w/v in CaCl 0,1M) were prepared to allocate GO/Alg solutions and chemically cross-link gels via diffusion (2 hr. at 37 °C).

GO/Alg hydrogels were characterized through optical/ AFM and FTIR analysis. Biocompatibility tests were performed embedding 3T3 fibroblasts (8 millions/ml) in the GO/Alg hydrogels; cell viability was evaluated at different time points up to two weeks with Dead/alive kit.

Gels mechanical proprieties were assessed via Dynamic Mechanical- Analysis (DMA) up to 28 days of culture (with and w/o cells) at different time points. All tests were performed in triplicate and statistical analyisis carried out (Mann–Whitney U test, n=9, p<0,005).

3D composite GO/alginate hydrogels were successfully realized (3 mm height, 5 mm diameter). Cell viability tests showed that the presence of GO does not decrease cell viability, confirming absence of toxicity, at least up to 2% wt GO/Alg. For all time points cell viability was statistically higher in presence of GO, while there was no significant difference between 0.5 wt% and 2 wt% GO/Alg. Hydrogels functionalized with GO exhibit an Elastic modulus about 3 fold higher than the Alg control at T0. After an initial decreasing of the Young Modulus for the all GO/Alg samples, possibly due to a partial degradation of alginate, a drastic recovery was observed up to 28 days of culture only for GO functionalized samples. The mechanical features improvement was neither mediated nor triggered by cells activity.

We successfully realized a natural-based 3D hydrogel nano-functionalized with graphene, where both mechanical and biological properties were successfully improved. The delayed stabilization of GO/Alg mechanical proprieties may be due either to a chemical interplay between GO and alginate matrix or to GO self-assembling processes over time. Future developments will be carried out to decouple the chemical and topological role of GO on the results observed up to now. Moreover, functional tests will be performed to evaluate the GO effects on in vitro cell differentiation for possible articular clinical applications.


M. Curto M. Pani G. Tozzi A. Barber R. Parwani

The human musculoskeletal system is a biological composite of hard and soft material phases organized into a complex 3D structure. The replication of mechanical properties in 3-dimensional space, so called ‘4D’ techniques, therefore promises next-generation of prosthetics and engineering structures for the musculoskeletal system. Approaches using in situ indentation of tissue correlated with micro computed tomography (μCT) are used here to provide a 4D data set that is representative of the native tissue at high fidelity. Multi-material 3D printing is exploited to realize the collected 4D data set by using materials with a wide range of mechanical properties and printing structures representative of native tissue. We demonstrate this correlative approach to reproduce bone structures and highlight a workflow approach of indentation, μCT and 3D printing to potentially mimic any structure found in the musculoskeletal system.

Structures in the human musculoskeletal system, such as bone [1] and tendon-bone connective tissue [2], can be considered as complex composites of hard and soft materials. Development of prosthetics capable of replacing body parts lost to trauma, disease or congenital conditions requires the accurate replication of the required body part. 3D printing promises considerable advantages over other manufacturing methods in mimicking native tissue, including the ability to produce complex structures [3]. However, accurate representation of whole body parts down to tissue microstructures requires correlative approaches where mechanical properties in 3-dimensional space are known. The objective of this study is to apply in situ indentation, correlate to 3D imaging of bone using μCT and finally 3D print mimicked structures.

Samples of bovine compact bone were imaged at high resolution using μCT (Xradia Versa 510, Zeiss, USA). A custom build in situ micro indentation setup within the μCT was used to map the mechanical properties of the bone at multiple positions. Correlation between sample x-ray attenuation and corresponding elastic modulus found from indentation was established. Data was converted to a 4D data set of elastic modulus values in 3D space, segmented and exported to the 3D printer. An inkjet 3D printer (Projet 5500X, 3D Systems, USA) was used to print materials with a range of mechanical properties that approach those found in the native bone material. Macroscopic testing on both bone samples and 3D printed samples were carried out using standard compression (Instron, UK).

Preliminary results indicated similarity between 3D printed structures and native bone tissue. Macroscopic testing of bone samples and 3D printed equivalents showed additional similarities in stress-strain behaviour.

Our preliminary work presented here indicates that the workflow of 3D imaging correlated to point mechanical measurements using indentation is suitable to give a 4D dataset that is representative of the native bone tissue. 3D printing is able to produce structures that start to mimick bone but are critically dependent on the data segmentation, particularly averaging imaging data to a resolution that is appropriate for the 3D printer.


P.V. Evdokimov V.I. Putlayev V.E. Dubrov I.M. Scherbakov T.V. Safronova E.S. Klimashina Ya.Yu. Filippov

Different 3D printing techniques for orthopaedic ceramic implants fabrication were compared. Stereolithography of calcium-phosphate slurries makes possible to achieve pre-determined pore size (50 mkm and more) and porosity of 70–80%. For the first time ceramic implants based on double calcium alkali metal phosphates (rhenanites) with given architecture serving good osteoconductivity as well as high resorptivity and strength (up to 10 MPa) were obtained.

Development of biomaterials based on calcium phosphates for orthopaedics is an important area of modern materials science. Chemical, physical and mechanical compatibility of this materials is a primary goal for this field. An ideal implant should gradually dissolve and be replaced by the new bone tissue in the patience body.

Bone is a multilevel organic/inorganic composite and the main inorganic compound is hydroxyapatite (HA, Ca10(PO4)6(OH)2). Due to this, biomaterials based on HA are widely used, along with biomaterials based on tricalcium phosphate (TCP, Ca3(PO4)2); however, low solubility of HA (lowest soluble phosphate) as well as TCP does not meet all of the requirements that biomaterials should have.

In this work decreasing of the crystal lattice energy approach was used as a strategy of improving the solubility. Modifying the chemical composition by replacing Ca2+cation in the TCP structure by a singly charged alkali metal cation leads to structural changes from TCP to CaMPO4(M=Na, K) – rhenanite. This work focuses on using double calcium alkali metal phosphates Ca(3 – x)М2x(PO4)2(x = 0–1, М = Na, K) as bioresorbable osteoconductive ceramic implant.

Additive manufacturing techniques are the most competitive technology which has been applied in the medical field for the direct or indirect construction of scaffolds and hard or soft tissues. Different techniques were used to prepare ceramics with given structure based on double calcium alkali metals phosphates to improve its osteoconductive properties. High resolution stereolithography (SLA) of ceramic photocurable resins has a great potential in fabrication of high quality complex shaped ceramics. For the first time ceramic implants based on double calcium alkali metal phosphates (rhenanites) with pre-determined pore size (50 mkm and more) and porosity of 70–80% were obtained. Given architecture of scaffold is serving a good osteoconductivity as well as a high resorptivity and strength (up to 10 MPa).

High resolution SLA can be easily used for fabrication of a small size implants (3mm in diameter/height or less) for in vivo experiments, and it can be freely used to fit any shade in osteoconductive properties of ceramic materials designed for bone grafting.

Russian Science Foundation supported this study under Grant No. 14-19-00752. The authors acknowledge partial support from Lomonosov Moscow State University Program of Development.


M. Peña Fernández M. Pani A. Barber G. Tozzi

3D printing can be used for the regeneration of complex tissues with intricate 3D microarchitecture. Trabecular bone is a complex and porous structure with a high degree of anisotropy. Changes in bone microarchitecture are associated with pathologies such as osteoporosis [1]. The objective of this study is to determine the viability of using 3D printing to replicate trabecular bone structures with a good control over the microarchitecture and mechanical properties.

Cylindrical samples of bovine trabecular bone were used in this study. Micro-computed tomography (microCT) was carried out and an isotropic voxel size of 22 µm was obtained (Xradia Versa 520, Zeiss, USA). After 3D reconstruction the main microstructure characteristics were analysed using ImageJ (NIH, US).

The 3D printed bone replicas were created by segmenting the microCT imaged bone tissue and then converted into a STL file using Avizo (FEI, US). The 3D printer used for this study was the ProJet 5500X (3D Systems, US), which allows a number of different materials to be printed in the same built with a resolution of 25 µm. Preliminary results were obtained using one single material (VisiJet CR-WT, Tensile Modulus: 1–1.6 GPa, Tensile Strength: 37–47 MPa). The 3D printed bone replicas followed a critical cleaning step to remove any remaining support material in the pores. MicroCT was then carried out for the bone replicas obtaining the same isotropic voxel size as for their biological counterparts. ImageJ was used to obtain the main microstructure characteristics.

The values of bone volume fraction (BV/TV), mean trabecular thickness (Tb.Th), mean trabecular spacing (Tb.Sp), and degree of anisotropy (DA) were measured for bone samples and their 3D printed replicas [2].

Preliminary results on the first bone sample with its 3D printed replica showed similar apparent trabecular structures. Their respective BV/TV was found to be 0.24 (bone) and 0.43 (replica). The Tb.Th and Tb.Sp were 0.222 mm and 0.750 mm respectively for the bone and 0.376 mm and 0.575 mm for the replica. Finally, their respective DA was found to be 0.68 (bone) and 0.66 (replica).

The main microstructure characteristics analyzed showed some differences between the bone sample and the 3D printed replica. In particular, the 3D microstructures resulted over-dimensioned mainly due to factors such as microCT voxel size, resolution of the 3D printer and supporting material removal. However this is a preliminary investigation. Further analysis will focus on optimizing the microCT imaging as well as the 3D printing process to achieve more accurate bone replicas. In addition, multi-material printing will be employed to optimize some of the mechanical properties obtained through in situ microCT testing and FE subject-specific modelling.


S. Lopa M. Bongio M. Gilardi S. Bersini C. Mondadori M. Moretti

We developed a 3D vascularized bone remodeling model embedding human osteoblast and osteoclast precursors and endothelial cells in a mineralized matrix. All the cells included in the model exerted their function, resulting in a vascularized system undergoing mineralized matrix remodeling.

Bone remodeling is a dynamic process relying on the balance between the activity of osteoblasts and osteoclasts which are responsible for bone formation and resorption, respectively. This process is also characterized by a tight coupling between osteogenesis and angiogenesis, indicating the existence of a complex cross-talk between endothelial cells and bone cells. We have recently developed microscale in vitro hydrogel-based models, namely the 3D MiniTissue models, to obtain bone-mimicking microenvironments including a 3D microvascular network formed by endothelial cell self-assembly [1–2]. Here, we generated a vascularized 3D MiniTissue bone remodeling model through the coculture of primary human cells in a 3D collagen/fibrin (Col/Fib) matrix enriched with CaP nanoparticles (CaPn) to mimic bone mineralized matrix.

Human umbilical vein endothelial cells (HUVECs), bone marrow mesenchymal stem cells (BMSCs), osteoblast (OBs) and osteoclast (OCs) precursors were cocultured in plain and CaPn-enriched Col/Fib according to the following experimental conditions: a) HUVECs-BMSCs; b) OBs-OCs; c) HUVECs-BMSCs-OBs-OCs. Undifferentiated BMSCs were used to support HUVECs in microvascular network formation. BMSCs and peripheral blood mononuclear cells were respectively pre-differentiated into OB and OC precursors through 7 days of culture in osteogenic or osteoclastogenic medium. Needle-shaped CaPn (Ø ∼20 nm, length ∼80 nm) were added to a collagen/fibrinogen solution. Cells were resuspended in a thrombin solution and then mixed with plain or CaPn-enriched collagen/fibrinogen. The cell-laden mix was injected in U-shaped PMMA masks and let to polymerize to generate constructs of 2×2×5 mm3. Samples were cultured for 10 days. Microvascular network formation was evaluated by confocal microscopy. OB differentiation was analyzed by quantification of Alkaline Phosphatase (ALP) and cell-mediated mineralization. OC differentiation was assessed by Tartrate-Resistant Acid Phosphatase (TRAP) and cell-mediated phosphate release quantification.

HUVECs developed a robust 3D microvascular network and BMSCs differentiated into mural cells supporting vasculogenesis. The presence of CaPn enhanced OB and OC differentiation, as demonstrated by the significantly higher ALP and TRAP levels and by the superior cell-mediated mineralization and phosphate release measured in CaPn-enriched than in plain Col/Fib. The coculture of OBs and OCs with HUVECs and BMSCs further enhanced ALP and TRAP levels, indicating that the presence of HUVECs and BMSCs positively contributed to OB and OC differentiation. Remarkably, higher values of ALP and TRAP activity were measured in the tetraculture in CaPn-enriched Col/Fib compared to plain Col/Fib, indicating that also in the tetraculture the mineralized matrix stimulated OB and OC differentiation.

The 3D MiniTissue bone remodeling model developed in this study is a promising platform to investigate bone cell and endothelial cell cross-talk. This system allows to minimize the use of cells and reagents and is characterized by a superior ease of use compared to other microscale systems, such as microfluidic models. Finally, it represents a suitable platform to test drugs for bone diseases and can be easily personalized with patient-derived cells further increasing its relevance as drug screening platform.


D. Owyang S. Dadia M. Jaere E. Auvinet M. Brevadt J. Cobb

The aim of this project is to test the parameters of Patient Specific Instruments (PSIs) and measuring accuracy of surgical cuts using sawblades with different depths of PSI cutting guide slot.

Clear operative oncological margins are the main target in malignant bone tumour resections. Novel techniques like patient specific instruments (PSIs) are becoming more popular in orthopaedic oncology surgeries and arthroplasty in general with studies suggesting improved accuracy and reduced operating time using PSIs compared to conventional techniques and computer assisted surgery. Improved accuracy would allow preservation of more natural bone of patients with smaller tumour margin. Novel low-cost technology improving accuracy of surgical cuts, would facilitate highly delicate surgeries such as Joint Preserving Surgery (JPS) that improves quality of life for patients by preserving the tibial plateau and muscle attachments around the knee whilst removing bone tumours with adequate tumour margins. There are no universal guidelines on PSI designs and there are no studies showing how specific design of PSIs would affect accuracy of the surgical cuts. We hypothesised if an increased depth of the cutting slot guide for sawblades on the PSI would improve accuracy of cuts.

A pilot drybone experiment was set up, testing 3 different designs of a PSI with changing cutting slot depth, simulating removal of a tumour on the proximal tibia. A handheld 3D scanner (Artec Spider, Luxembourg) was used to scan tibia drybones and Computer Aided Design (CAD) software was used to simulate osteosarcoma position and plan intentioned cuts. PSI were designed accordingly to allow sufficient tumour. The only change for the 3 designs is the cutting slot depth (10mm, 15mm & 20mm). 7 orthopaedic surgeons were recruited to participate and perform JPS on the drybones using each design 2 times. Each fragment was then scanned with the 3D scanner and were then matched onto the reference tibia with customized software to calculate how each cut (inferior-superior-vertical) deviated from plan in millimetres and degrees. In order to tackle PSI placement error, a dedicated 3D-printed mould was used.

Comparing actual cuts to planned cuts, changing the height of the cutting slot guide on the designed PSI did not deviate accuracy enough to interfere with a tumour resection margin set to maximum 10mm. We have obtained very accurate cuts with the mean deviations(error) for the 3 different designs were: [10mm slot: 0.76 ± 0.52mm, 2.37 ± 1.26°], [15 mm slot: 0.43 ± 0.40 mm, 1.89 ± 1.04°] and [20 mm: 0.74 ± 0.65 mm, 2.40 ± 1.78°] respectively, with no significant difference between mean error for each design overall, but the inferior cuts deviation in mm did show to be more precise with 15 mm cutting slot (p<0.05).

Simulating a cut to resect an osteosarcoma, none of the proposed designs introduced error that would interfere with the tumour margin set. Though 15mm showed increased precision on only one parameter, we concluded that 10mm cutting slot would be sufficient for the accuracy needed for this specific surgical intervention. Future work would include comparing PSI slot depth with position of knee implants after arthroplasty, and how optimisation of other design parameters of PSIs can continue to improve accuracy of orthopaedic surgery and allow increase of bone and joint preservation.


M. Fantini F. De Crescenzio L. Brognara N. Baldini

A complete design-manufacturing process for delivering customized foot orthoses by means of digital technologies is presented. Moreover, this feasibility study aims to combine a semi-automatic modelling approach with the use of low-cost devices for 3D scanning and 3D printing.

In clinical practice, traditional methods for manufacturing customized foot orthoses are completely manual, mainly based on plaster casting plus hand fabrication, and are widely used among practitioners. Therefore, results depend on skills and expertise of individual orthoptists and podiatrists that need considerable training and practice in order to obtain optimal functional devices.

On the other side, novel approaches for design and manufacturing customized foot orthoses by means of digital technologies (generally based on 3D scanning, 3D modelling and 3D printing) are recently reported as a valid alternative method to overcome these limitations.

This study has been carried out in an interdisciplinary approach between the staff of Design and Methods in Industrial Engineering and the staff of Podology with the aim to assess the feasibility of a novel user-friendly and cost-effective solution for delivering customized functional foot orthoses. More specifically, a Generative Design (GD) workflow has been developed to enable practitioners without enough CAD skills to easily 3D modelling and interactively customize foot orthoses. Additionally, low-cost devices for 3D scanning and 3D printing that have been acquired by the Podology Lab, were also tested and compared with the high-cost ones of the Department of Industrial Engineering.

The complete process is divided into three main steps. The first one regards the digitization of the patient's foot by means of 3D laser scanner devices. Then a user-friendly 3D modelling approach, developed for this purpose as GD workflow, allows interactively generating the customized foot orthosis, also adjusting several features and exporting the watertight mesh in STL format. Finally, the last step involves Additive Manufacturing systems to obtain the expected physical item ready to use.

First, for what concerns the digitizing step, the acquired data resulting from 3D scanning by means of the low-cost system (Sense 3D scanner) appears accurate enough for the present practical purposes.

Then, with respect to the 3D modelling step, the proposed GD workflow in Grasshopper is intuitive and allows easily and interactively customizing the final foot orthosis. Finally, regarding the Additive Manufacturing step, the low cost 3D printer (Wasp Delta 40 70) is capable to provide adequate results for the shell of the foot orthosis. Moreover, this system appears really versatile in reason of the capability to print in a wide range of different filaments. Therefore, since the market of 3D printing filaments is rapidly growing, building sessions with different materials (both flexible and rigid such, for example, PLA, AB and PETG) were completed.

This study validated, in terms of feasibility, that the use of a GD modelling approach, in combination with low-cost devices for 3D scanning and 3D printing, is a real alternative to conventional processes for providing customized foot orthosis. Moreover, the interdisciplinary approach allowed the transfer of skills and knowledge to the practitioners involved and, also, the low-cost devices Sense 3D scanner and Wasp Delta 40 70 that have been acquired by the Podology Lab, were demonstrated suitable for this kind of applications.


C.N.M. Ryan M.J. Biggs A. Pandit D.I. Zeugolis

Cell-based therapies require removal of cells from their optimal in vivotissue context and propagation in vitroto attain suitable number. However, bereft of their optimal tissue niche, cells lose their phenotype and with it their function and therapeutic potential. Biophysical signals, such as surface topography and substrate stiffness, and biochemical signals, such as collagen I, have been shown to maintain permanently differentiated cell phenotype and to precisely regulate stem cell lineage commitment (1, 2). Herein, we developed and characterised substrates of variable rigidity and constant nanotopographical features to offer control over cellular functions during ex vivoexpansion.

PDMS substrates with varying ratios of monomer to curing agent (0:1, 1:1, 5:1) were fabricated based on established protocols. Grooved substrates were created using a silinated wafer with groove dimensions of 2µm × 2µm × 2µm; planar control groups were created using flat glass. The aforementioned PDMS solutions were poured onto the wafer/glass, cured at 200 ºC and treated with oxygen plasma. Substrates were then investigated with/without collagen I coating. (0.1, 0.5, and 1 mg/ml). Atomic force microscopy (AFM) and optical profilometry were used to assess the topographical features of the substrates. Dynamic mechanical analysis (DMA) was used to determine the mechanical properties of the substrates. The simultaneous effect of surface topography / substrate rigidity on cell phenotype and function was assessed using human permanently differentiated cells (dermal fibroblasts, tenocytes) and stem cells (human bone marrow stem cells) and various morphometric and gene / protein assays.

PDMS substrates of varying stiffness (1000 kPa, 130 kPa, 50 kPa) can be made by varying the Sylgard ratio, while maintaining topographical features. Human adult dermal fibroblasts, tenocytes, and tenocytes attach, align, elongate and deposit aligned extracellular matrix on the grooved PDMS substrate surface of all 3 stiffnesses.

Preliminary in vitrodata indicate that surface topography and substrate stiffness play crucial role in maintaining cell phenotype and the prevention of phenotypic drift in vitro.


D. Gaspar A. Pandit D. Zeugolis

Cell-based tissue engineering strategies for tendon repair have limited clinical applicability due to delayed extracellular matrix (ECM) deposition and subsequent prolonged culture periods, which lead to tenogenic phenotypic drift. Deposition of ECM in vitrocan be enhanced by macromolecular crowding (MMC), a biophysical phenomenon that governs the intra- and extra-cellular milieu of multicellular organisms2, which has been described to accelerate ECM deposition in human tenocytes1. A variety of cell sources have been studied for tendon repair including tenocytes, dermal fibroblasts and mesenchymal stem cells (MSCs)3and various biophysical, biochemical and biological tools have been used to mimic tendon microenvironment and induce phenotype maintenance in long term cultures or differentiation4. Therefore, we propose to assess the combined effect of macromolecular crowding and mechanical loading on different cell sources to determine their suitability for the in vitro fabrication of tendon-like tissue.

Human dermal fibroblasts, tenocytes and bone marrow mesenchymal stem cells were cultured for 3 days with 100 µg/ml of carrageenan (MMC) under static and dynamic culture conditions. Cyclic uniaxial strain was applied using a MechanoCulture FX (CellScale) at 1 Hz and 10% strain for 12 hours a day. Cell morphology and alignment were evaluated by fluorescein isothiocyanate (FITC) labelled phalloidin and 4’,6-diamidino-2-phenylindole (DAPI) staining. Extracellular matrix composition was evaluated by immunocytochemistry. Cell phenotype maintenance/differentiation (tenogenic, chondrogenic and osteogenic lineages) were assessed by gene and protein analysis.

After 12 hours of exposure to the uniaxial load, permanently differentiated cells are strictly aligned in the direction perpendicular to the load while the MSCs do not show preferential alignment. ECM deposition (e.g. collagens type I, III, V, VI) is increased in the presence of MMC and this effect is maintained under mechanical loading. ECM deposited under mechanical loading is also aligned in the direction perpendicular to the load. Tenogenic, osteogenic and chondrogenic markers are being tested to assess cell phenotype.

Mechanical loading and macromolecular crowding can induce cell and ECM alignment and increased ECM deposition without affecting cell metabolic activity or viability. Cell and ECM alignment alongside ECM composition and tenogenic marker expression suggest this approach might be suitable to maintain or differentiate towards tenogenic lineage.


S. Korntner C. Lehner N. Kunkel A. Traweger H. Tempfer

Metabolic disorders are frequently associated with tendon degeneration and impaired healing after acute injury. However, the underlying cellular and molecular mechanisms remain largely unclear. We have previously shown that human and rat tendon cells responde to glucose stimulation in vitro by secretion of insulin. Therefore, we now hypothesize that nutritional glucose uptake affects tendon healing in a rat model.

In female rats (n=30/group), unilateral full-thickness Achilles tendon defects were created. Immediately after surgery animals were either fed a glucose rich- or a control diet for up to 4 weeks. Gait analysis (Catwalk, Noldus) was performed at three time points. In addition, tendon thickness measurements, biomechanical testing and immunohistochemical analysis were conducted. Subsequently, gene expression analysis, comparing cDNA pools (n=5) prepared from repair tissues of both groups was performed.

The repair tissues of the high glucose group were significantly thicker compared to the control group (p<0.001). The intermediate toe spread, an indicator of pain, were significantly improved in the high glucose group one and two weeks post surgery. Biomechanical analysis revealed that the repair tissues of the high glucose group were significantly stiffer (p<0.05) compared to the control group, no significant difference was detected for maximum tensile load…. The proportion of Ki67+ cells in the repair tissue was 3.3% in the control diet group and 9,8% in the high glucose group, indicating increased cell proliferation (p<0.001). Finally, gene expression analysis revealed the chondrogenic marker genes Collagen II, Aggrecan, COMP and SOX9 to be upregulated and genes involved in lipid metabolism like PPARgamma and Fabp2 to be downregulated in the glucose diet group.

Here we show fort he first time that a high-glucose diet affects gait pattern and tendon biomechanics, influences tendon thickness and cell proliferation. Gene expression analysis reveals a regulation of chondrogenic as well as adipogenic marker genes. The molecular mechanisms underlying these effects on cells and extracellular matrix are currently under investigation, potentially revealing targets for developing a dietary intervention scheme to support tendon regeneration after trauma or tendon disease.


S. Minkwitz F. Klatte-Schulz A. Schmock Meaghan. Stolk M. Seifert M. Scheibel B. Wildemann

Tendon injuries are associated with the formation of inferior, disorganized scar tissue at the tendon bone insertion site and high failure rates. Two major processes are discussed being key players: the inflammatory reaction upon tear and the remodeling process of the tendon. In a previous study we demonstrated that the profile of MMPs and TIMPs, being key factors of tendon modeling and remodeling, is altered in tenocytes of rotator cuff tears from donors with higher age (>65 years) and degenerative status (high degree of muscle fatty infiltration)[1]. But do these cells also show different expression of inflammatory cytokines or react different upon cytokine stimulation? The aim of our project was to analyze the expression of inflammatory cytokines in human tenocyte-like cells (hTLCs) on mRNA-level and the responsiveness to cytokine stimulation regarding differences between varying donor characteristics such as age, sex and the degenerative status of the tendon.

TLCs were isolated from SSP tendon biopsies from 16 male and 14 female donors undergoing arthroscopic or open shoulder surgery. Cells from each donor (passage 1 or 2) were seeded in a 6-well plate and RNA was isolated after 7 days of culture. Quantitative Real-Time PCR was performed to analyze the expression of IL-6, IL-1β, TNF-α, IL-10, IL-33, TGF-β1 and COX-2. Furthermore, hTLCs of 12 male donors were stimulated for 3 days with a combination of TNF-α and IFN-γ (10ng/ml). The effect of the cytokines was analyzed by flow cytometry regarding surface marker expression: ICAM (CD54), VCAM (CD106), and Major Histocompatibility Complex (MHC)-class I and MHC-class II. Statistics: Mann-Whitney-U-Test, Spearman´s-Rho-correlation, p≤0.05.

Gene expression analysis revealed high levels of IL-6, TGF-β1 and COX-2 in hTLCs but low expression of TNF-α and IL-10. No differences in the expression of the inflammatory cytokines were found between low and high fatty infiltration or with respect to age. The stimulation of the hTLCs with TNF-α and IFN-γ increased the number of ICAM and VCAM positive cells up to 100% and 97±5%, respectively. MHC-class II was not expressed on unstimulated cells but 77±17% MHC-class II positive cells were present after stimulation. All unstimulated cells were positive for MHC-class I, but the MFI (Mean Fluorescent Intensity) increased after stimulation. No significant difference in the expression of surface markers was detected when comparing tenocytes of donors with low and high muscle fatty infiltration.

In contrast to the significant changes in expression levels of MMPs and TIMPs in tenocytes of donors with different age and degenerative status[1], we could not detect any significant changes in the expression of inflammatory cytokines or in the responsiveness of these tenocytes upon cytokine stimulation. All tenocytes showed the potential to respond to inflammatory processes. This indicates that the response of the tenocytes to inflammatory stimuli seems to be independent of donor characteristics, whereas the tendon remodeling might depend on age and degenerative status of the donor.


A. Sensini M.L. Focarete C. Gualandi L. Cristofolini

Tendon regeneration is complex since the scaffold has to bear high loads and stress concentrations, while providing suitable deformability. Previous studies demonstrated a physiological orientation of the fibers and good cell adhesion on electrospun polymeric scaffolds [1]. The aims of this work were to: (i) prepare and characterize electrospun resorbable scaffolds with different compositions and (ii) develop a process to produce a multiscale bundle assembly to mimic the hierarchical structure and biomechanical properties of a real tendon.

We produced fibrous scaffolds made of blends of poly-L-lactic acid (PLLA) and collagen (Coll):

Pure PLLA;

PLLA/Coll 75/25 w/w;

PLLA/Coll 50/50 w/w.

In order to prepare 3D bundles made of aligned fibres, we used a high-speed rotating collector. The electrospun nanofibers were deposited tangentially onto the drum, the electrospun layer was manually rolled transversely along the drum and then removed. The bundles were approximately 150 mm long and 300–450 mm in diameter. Five specimens were prepared and tested for each blend.

To evaluate the mechanical properties of the bundles a tension test was applied with capstan grips on a testing machine with a 100N load cell, under the following conditions:

Gauge length: 20 mm.

Monotonic ramp to break detection.

Actuator speed 5 mm/min.

For all the bundles, the stress-strain curve showed an initial non-linear part (toe region), similar to the laxity of the tendon at rest. The mechanical analysis confirmed the outstanding ductility and toughness of pure PLLA. Increasing the percentage of collagen resulted in a reduction of ductility. The PLLA/Coll 50/50 had a rather brittle behaviour.

The values of mechanical properties found for the different compositions were slightly lower but of the same order of magnitude as tendon fibers (Failure stress: 33.7±19.2 MPa; Failure strain: 21.0±9.1 %; Young Modulus: 257±101 MPa [2]). The bundles made of pure PLLA had a failure stress of 13.2±0.8 MPa; failure strain of 84.7±9.4%; Young Modulus of 78.6±7.5 MPa. The bundles made of PLLA/Coll 50/50 had: failure stress of 10.5±1.5 MPa; failure strain of 21.4±2.7%, Young Modulus of 65.7±9.8 MPa. The most promising composition was the PLLA/Coll 75/25, with a failure stress of 14.0±0.7 MPa; failure strain of 40.3±2.2 %, Young Modulus of 98.6±12 MPa.

We also tested bundles mechanical properties after aging samples in phosphate buffer at 37 °C for 48 hours, 7 and 14 days. After ageing, stress and strain values were progressively lower, while the toughness increased, compared to the dry samples.

The promising results found in this work for the electrospun PLLA-collagen blends confirm their potential use for tendon tissue regeneration. This is a starting point for developing multiscale scaffolds mimicking the structure of tendon tissue, which can potentially be used in human regenerative medicine both as bioresorbable prosthesis, or inserted in a bioreactor for in vitro production of tendon tissue.


X. Pang J.-P. Wu B. Kirk J. Xu G. Allison

A tendon is a fibrous connective tissue that acts to transmit tensile forces between muscles and bones. It mainly consists of soluble substance, collagen and small volume of elastic fibres, which are produced by tenoblasts and tenocytes. The Achilles tendon is the thickest tendon in the human body that subjects to some of the highest tensile force, thus disorders and ruptures commonly happen. As the insoluble fibrous components in Achilles tendons, the collagen fibrils and elastic fibres have unique spatial structure that plays important functional roles. Despite this, the understanding of relationship between them is still limited due to the lack of imaging evidence. Using confocal and second harmonic generation microscopy, this study aims to comprehensively investigate the spatial relationship of collagen, elastic fibres and tenocytes in hydrated tendons.

Longitudinal sections of 50 µm thick and transverse sections of 20 µm thick were cryo-sectioned respectively from the mid-portion of ten rabbit Achilles tendons. Sections were stained with 0.03g/L Acridine Orange (AO) and 1mg/ml Sulforhodamine B (SRB) solution respectively for labelling the nucleus and elastic fibres. The Leica TCS SP2 multiphoton microscopy containing second harmonic generation microscopy can image collagen without labelling. The sections were scanned by the multiphoton microscopy, and images were processed and reconstructed into 3D images to study the spatial structure of collagen, elastic fibres and cells in Achilles tendons

A rabbit Achilles tendon consists of three sub-tendons named flexor digitorum superficialis tendon, medial gastrocnemius tendon and lateral gastrocnemius tendon. Loose connective tissue connects the three sub-tendons and ensures efficient sliding between sub-tendons. The 3D network shows that the mid-portion of Achilles tendons is composed of longitudinal collagen and elastic fibres, while spindle tenocytes rest along the collagen and elastic fibres. Tenocytes appear to have a closer microstructural relationship with the elastic fibres. In comparison with the collagen, tenocytes and elastic fibres only occupy a very small volume in the 3D network. The elastic fibres exist in both tendon proper and endotenons. The tendon sheath and loose connective tissue have a higher cell density, and the cells are large and round while compared with tenocytes.

As a component of the extracellular matrix (ECM) in Achilles tendons that closely mediates with the tenocytes, the elastin may participate in the force transition and interaction between tenocytes and the ECM. The elastic fibres may also endow Achilles tendons with unique mechanical properties to stand for tensile force.


T. Chano S. Avnet K. Kusuzaki A. Mai N. Baldini

The glycolytic-based metabolism of cancers promotes an acidic microenvironment that is responsible for increased aggressiveness. However, the effects of acidosis on tumour metabolism have been almost unexplored, and the metabolic adaptation of cancer cells to acidosis has never been compared with the metabolic response of normal cells.

In this study, to pinpoint for the first time the different metabolic profiles between osteosarcoma (OS) cells and normal human fibroblasts (Fb) under short-term acidosis, we used capillary electrophoresis with time-of-flight mass spectrometry (CE-TOFMS). We also screened alterations of the epigenetic profiles – DNA methylation and histone acetylation – of OS cells and compared it with those of normal Fb.

Using CE-TOFMS, we observed a significant metabolic difference associated with glycolysis repression (dihydroxyacetone phosphate), increase of amino acid catabolism (phosphocreatine and glutamate) and urea cycle enhancement (arginino succinic acid) in OS cells compared with normal Fb. Noteworthy, metabolites associated with chromatin modification, like UDP-glucose and N8-acetylspermidine, decreased more in OS cells than in normal Fb. Further, combined bisulfite restriction analysis (COBRA) and acetyl-H3 immunoblotting indicated an epigenetic stability in OS cells than in normal Fb, and OS cells were more sensitive to an HDAC inhibitor under acidosis than under neutral condition.

Our data suggest that acidosis promotes a metabolic reprogramming that can contribute to the epigenetic maintenance under acidosis only in OS cells, and then the acidic microenvironment should be considered for future therapeutic approaches. The application of epigenetic modulators will be able to become an effectively therapeutic option to selectively target malignancies under the acidic microenvironment.


G. Valente L. Pitto E. Schileo S. Piroddi A. Leardini M. Manfrini F. Taddei

Biomechanical interpretations of bone adaptation in biological reconstructions following bone tumors would be crucial for orthopedic oncologists, particularly if based on quantitative observations. This would help to plan for surgical treatments, rehabilitative programs and communication with the patients. In particular, outcomes of the Capanna technique, which combines bone allograft and vascularized fibula autograft, lead to stable and durable reconstructions [1, 2], and different remodeling patterns have been described [3] as a response to mechanical loading. However, there are several events that are not understood and require a biomechanical interpretation, as the evolution patterns can evolve towards conditions that threaten the strength of the reconstruction.

We aimed to (i) analyze the biomechanical adaptation of a femoral reconstruction after Ewing sarcoma, in terms of morphological and densitometric evolution of bone from CT data, internal loads acting on the bone during movement, mechanical competence of the reconstruction, and (ii) relate in-progress bone resorption to the mechanical stimulus induced by different motor activities.

Eight CT datasets of a patient (8 yrs at surgery using the Capanna technique) during 76-month follow-up were available. The evolution of bone morphology, density and moments of inertia was quantified. At the last control, the patient underwent gait analysis (walking, chair rise/sit, stair ascent/descent, squat).

We created a multiscale musculoskeletal and finite element model from CT scans and motion analysis data at the end of follow-up, using state-of-the-art modeling workflows [4, 5], to analyze muscle and joint loads, and to compare the mechanical competence of the reconstructed bone with the contralateral limb, in the current real condition and in a possible revision surgery that removed proximal screws.

Although there were no reconstruction complications and osteo-fusion with intense remodeling between allograft and autograft was shown, there was a progressive decrease in allograft cortical thickness and density. There were strategies of muscle coordination that led to differences in joint loads between limbs more marked in more demanding motor activities, and generally larger in the contralateral limb. The operated femur presented a markedly low ratio of physiological strain due to load-sharing with the metal implant, particularly in the lateral aspect. A possible revision surgery removing the three most proximal screws would help restore a physiological strain configuration, while the safety of the reconstruction would not be threatened.

We suggest that bone resorption is related to load-sharing and to the internal forces exerted during movement, and the mechanical stimulus should be improved by adopting modifications in the surgical treatment and by promoting physical therapy aimed at specific muscle strengthening.


C. Errani G. Leone L. Cevolani B. Spazzoli T. Frisoni D. Donati

The purpose of our study was to identify possible risk factors of patients with GCT of the long bones after curettage and packing the bone cavity with bone cement or bone allografts.

We retrospectively reviewed the records of 249 patients with GCT of the limbs treated at Musculoskeletal Oncology Department of our institution between 1990 and 2013, confirmed histologically and recorded in the Bone Tumor Registry. We reviewed 219 cases located in the lower limb and 30 of the upper limb. This series includes 135 females and 114 males, with mean age 32 years (ranging 5 to 80 yrs). According to Campanacci's grading system, 190 cases were stage 2, 48 cases stage 3, and 11 cases stage 1. Treatment was curettage (intralesional surgery). Local adjuvants, such as phenol and cement, were used in 185 cases; whereas in the remaining 64 cases the residual cavity was filled with allografts or autografts only.

Oncological outcome shows 203 patients alive and continuously disease-free (CDF), 41 patients NED1 after treatment of local recurrence (LR), 2 patients NED1 after treatment of lung metastases, 2 AWD with lung metastases. One patient died of unrelated causes (DOD).

LR rate was 15.3% (38 pts). Lung metastases rate was 1.6% (4 pts). In patients treated by curettage and cement (185 cases) LR was 12% (22 pts). Conversely, in patients treated curettage and bone allografts it was higher (16/64 cases), with an incidence of 25% of cases (p=0.004). Oncological complications seemed to be related with site, more frequently occurring in the proximal femur (p=0.037). LR occurred only in stage 2 or 3 tumors without statistical significance (p>0.05). The mean interval between the first surgical treatment and LR was 22 months (range: 3–89 mos). However, in the multivariate analysis no significant statistical effect on local recurrence rate could be identified for gender, patient's age, Campanacci's grading, or cement vs allografts. The only independent risk factor related to the local recurrence was the site, with a statistical significance higher risk for patients with GCT of the proximal femur (p= 0.008).

Our observation on the correlation of tumor location and risk of local recurrence is new. Therefore, special attention must be given to GCTs in the proximal femur. In fact, primary benign bone tumors in the proximal femur are difficult to treat due to the risk of secondary osteonecrosis of the femoral head or pathologic fracture.

Numerous methods of reconstructions have been reported. Among these, total hip arthroplasty (THA) or bipolar hip arthroplasty (BHA) should be avoided when possible as more cases are observed in young patients.

Therefore, we do not suggest different approach for the proximal femur. GCT in the proximal femur is much more difficult to treat than in other sites, but if curettage is feasible, the best way is to save the joint with a higher risk of local recurrence, knowing that the sacrifice of the hip articulation in case of recurrence is always possible with THA or BHA.


L. Cavazzuti G. Valente M. Amabile S. Bonfiglioli Stagni F. Taddei M.G. Benedetti

In patients with developmental dysplasia of the hip (DDH) chronic joint dislocation induces remodeling of the soft tissue with contractures, muscle atrophy, especially of the hip abductors muscles, leading to severe motor dysfunction, pain and disability (1). The aim pf the present work is to explore if a correct positioning of the prosthetic implants through 3D skeletal modeling surgical planning technologies and an adequate customized rehabilitation can be beneficial for patients with DDH in improving functional performance.

The project included two branches: a methodology branch of software development for the muscular efficiency calculation, which was inserted in the Hip-Op surgical planning system (2), developed at IOR to allow surgical planning for patients with complex hip joint impairment; and a clinical branch which involved the use of the developed software as part of a clinical multicentric randomized trial. 50 patients with DDH were randomized in two groups: a simple surgical planning group and an advanced surgical planning with muscular study group. The latter followed a customized rehabilitation program for the strenghtening of hip abductor muscles. All patients were assessed before surgery (T0) and at 3 (T1) and 6 months (T2) postoperatively using clinical outcome (WOMAC, HHS, ROM, MMT, SF12, 10mt WT) and instrumental measures (Dynamometric MT). Pre- and post-operative musculoskeletal parameters obtained by the software (i.e., leg length discrepancy, hip abductor muscle lengths and lever arms) using Hip-Op during the surgical planning were considered.

One Way ANOVA for ROM measurement showed a significant improvement at T2 in patients included in experimental group, as well as WOMAC, HHS and SF12 score. The Dynamometric MT score showed significant differences between at T2 (p<0.009).

Spearman's rank correlation coefficients showed a significant correlation between both pre- and post-operative abductors lever arm (mm) and hip abductor muscle strength at T2 (ρ = −0.55 pre-op and ρ = −0.51 post-op, p p<0.012 and p<0.02 respectively) and between the operated pre-postoperative leg length variation (mm) and the hip abductor muscle strength (ρ = −0.55, p p<0.013).

Results so far obtained showed an improvement of functional outcomes in patients undergoing hip replacement surgery who followed therapeutic diagnostic pathway sincluding a preoperative planning including the assessment of the abductiors lever arm and a dedicated rehabilitation program for the strenghtening of abductios. Particularly interesting is the inverse relationship between the strength of the hip abductor muscles and the variation of the postoperative abductor lever arm.


M. Wesseling L. Bosmans C. Van Dijck R. Wirix-Speetjens I. Jonkers

Children with cerebral palsy (CP) often present femoral bone deformities not accounted for in generic musculoskeletal models [1,2]. MRI-based models can be used to include subject-specific muscle paths [3,4], although this is a time-demanding process. Recently, non-rigid deformation techniques have been used to transform generic bone geometry, including muscle points, onto personalized bones [5]. However, it is still unknown to what extent such an approximation of subject-specific detail affects calculated hip contact forces (HCFs) during gait in CP children.

Seven children diagnosed with diplegic CP walked independently at self-selected speed. 3D marker trajectories were captured using Vicon (Oxford Metrics, UK) and force data was measured using two AMTI force platforms (Watertown, MA). MR-images were acquired (Philips Ingenia 1.5T) of all subjects lying supine. Firstly, a generic model [6] was scaled using the marker positions of a static pose. Secondly, a MRI-model containing the subject-specific bone structures and muscle paths of all hip and upper leg muscles was created [3]. Thirdly, the generic femur and pelvis geometries and muscle points were transformed onto the image-based femur and pelvis using an advanced non-rigid deformation procedure (Materialise N.V.). For all models, further analyses were performed in OpenSim 3.1 [7]. A kalman smoother procedure was used to calculate joint angles [8]. Muscle forces were calculated using a static optimization minimizing the sum of squared muscle activities. Next, HCFs were calculated and normalized to body weight (BW). First and second peak HCFs were determined and used for a Kruskal-Wallis test to determine differences between models. In case of a significant difference, a post-hoc rank-based multiple comparison test with Bonferonni adjustment was used. Further, average absolute differences in muscle points between the models was calculated, as well as average differences in moment arm lengths (MALs), reflecting muscle function.

Where the scaled generic muscle points differed on average 2.49cm from the MRI points, the non-rigidly deformed points differed 1.54cm from the MRI muscle points. Specifically, the tensor fascia latae differed most between the deformed and MRI models (11.7cm). When considering MALs, the gluteii muscles present an altered function for the generic and deformed models compared to the MRI model for all degrees of freedom of the hip at the time of both HCF peaks. The differences between models resulted in a significantly increased second peak HCF for the MRI models compared to the generic models (first peak average HCF: 3.88BW, 3.95BW and 4.90BW; second peak average HCF: 3.03BW, 4.89BW and 5.32BW for the generic, MRI and non-rigidly deformed models respectively). Although not significantly different, the deformed models calculated slightly increased HCFs compare to the MRI models.

The generic models underestimated HCFs compared to the MRI models, while the non-rigidly deformed models slightly overestimated HCFs. However, differences between the deformed and MRI models in terms of muscle points and MALs remain, specifically for the gluteii muscles. Therefore, further user-guided modification of the model based on MR-images will be necessary.


P. Augat P. Varady U. Glitsch

Hip osteoarthritis (OA) is a disorder of high socio-economic relevance. The causes of hip osteoarthritis are multifactorial; however, the epidemiological literature regularly cites occupational tasks, such as heavy lifting and carrying, as a risk factor for the development of hip OA. The level of mechanical stresses upon the hip joint caused by occupational tasks remain largely unclear, however. This project sought to quantify the levels of stresses upon the hip joint during occupational tasks. In particular we were interested in comparing load as well as stress levels from everyday activities with occupational tasks typically performed by blue collar workers.

Sectors and occupational activities presenting a high potential for stress upon the hip joint were identified by means of a survey conducted among accident insurance institutions. Lifting, carrying and load transfer (25 to 50 kg), ladder climbing and stair climbing (without additional load and with an additional load of 25 kg) were selected from among these sectors and activities for the purpose of the study. Laboratory measurements were performed in which motion capturing and a range of force measurement apparatus were used to record and evaluate the performance of the selected tasks by 12 skilled workers from a number of sectors. multi-body simulation was used to calculate the stress in the form of hip-joint contact forces. The contact pressures and their geometric distribution on the cartilage surfaces of the hip joint were then calculated from these results by means of finite-element analysis. This produced an indicator for the strain upon the hip joint.

The highest hip-joint forces, at (637±148)% of the body weight, occurred during handling of the 50 kg load. This corresponded to 1.7 times the stress arising during walking, at (368±78)% of the body weight. Significantly higher hip-joint forces compared to those arising during walking were observed for the carrying of loads of 40 kg and 50 kg, the handling of loads of 25 kg, 40 kg and 50 kg, and stair climbing with an additional load of 25 kg. Maximum contact pressures of 24.1 MPa were computed during the finite-element analysis (lifting of 50 kg); only very small regions of the joint surface were however affected by these high pressures. During walking, the maximum pressure reached 15 MPa.

The results obtained provide a quantitative overview of the strains upon the hip joint during occupational and everyday tasks. They constitute an aid to future quantitative exposure assessments in a range of sectors and occupational fields, and thus contribute to improving estimation of the relevance of stresses of occupational origin to the incidence of hip OA.


M. Rutherford J. Hill D. Beverland A. Lennon N. Dunne

Anterior-posterior (AP) x-rays are routinely taken following total hip replacement to assess placement and orientation of implanted components. Pelvic orientation at the time of an AP x-ray can influence projected implant orientation.1However, the extent of pelvic orientation varies between patients.2Without compensation for patient specific pelvic orientation, misleading measurements for implant orientation may be obtained. These measurements are used as indicators for post-operative dislocation stability and range of motion. Errors in which could result in differences between expectations and the true outcome achieved. The aim of this research was to develop a tool that could be utilised to determine pelvic orientation from an AP x-ray.

An algorithm based on comparing projections of a statistical shape model of the pelvis (n=20) with the target X-ray was developed in MATLAB. For each iteration, the average shape was adjusted, rotated (to account for patient-specific pelvic orientation), projected onto a 2D plane, and the simulated outline determined. With respect to rotation, the pelvis was allowed to rotate about its transverse axis (pelvic flexion/extension) and anterior-posterior axis (pelvic adduction/abduction). Minimum root mean square error between the outline of the pelvis from the X-ray and the projected shape model outline was used to select final values for flexion and adduction. To test the algorithm, virtual X-rays (n=6) of different pelvis in known orientations were created using the algorithm described by Freud et al.3The true pelvic orientation for each case was randomly generated. Angular error was defined as the difference between the true pelvic orientation and that selected by the algorithm.

Initial testing has exhibited similar accuracy in determining true pelvic flexion (error = 2.74°, σerror=±2.21°) and true pelvic adduction (error = 2.38°, σerror=±1.76°). For both pelvic flexion and adduction the maximum angular error observed was 5.62°. The minimum angular error for pelvic flexion was 0.37°, whilst for pelvic adduction it was 1.08°.

Although the algorithm is still under development, the low mean, maximum, and standard deviations of error from initial testing indicate the approach is promising. Ongoing work will involve the use of additional landmarks for registration and training shapes to improve the shape model. This tool will allow surgeons to more accurately determine true acetabular orientation relative to the pelvis without the use of additional x-ray views or CT scans. In turn, this will help improve diagnoses of post-operative range of motion and dislocation stability.


C. Rivière P. Beaulé J.-Y. Lazennec A. Hardijzer E. Auvinet J. Cobb S. Muirhead-Allwood

In approximately 20 years, surgical treatment of femoro-acetabular impingement (FAI) has been widely accepted, and its indications refined. However, the current approach of the disease prevents a good understanding of its pathophysiology, and numerous uncertainties remain. Comprehending inter-individual spine-hip relations (SHRs) can further clarify the pathophysiology of impingement, and explain occasional surprising mismatch between clinical assessment and imaging or intraoperative findings. The rational is simple, the more the spino-pelvic complex is mobile (sagittal ROM) and the more the hip is protected against hip impingement but would probably become at risk of spine-hip syndrome if the spino-pelvic complex comes to degenerate. Grouping patients based on their spine-hip relation can help predict and diagnose hip impingement, and assess the relevance of physiotherapy. With the proposed new classification of FAIs, every patient can be classified in homogeneous groups of complexity of treatment. The primary aim of this paper is to raise awareness of the potential impact that the spine-hip relations have on the hip impingement disease. Two new classifications are proposed, for FAIs and SHRs that can help surgeons in their comprehension, and could be beneficial in clinical and research areas.


M. Bonnin M. Saffarini N. Bossard J. Victor

Analysis of the morphology of the distal femur, and by extension of the femoral components in total knee arthroplasty (TKA), has largely been related to the aspect ratio, which represents the width of the femur. Little is known about variations in trapezoidicity (i.e. whether the femur is more rectangular or more trapezoidal). This study aimed to quantify additional morphological characteristics of the distal femur and identify anatomical features associated with higher risks of over- or under-sizing of components in TKA.

We analysed the shape of 114 arthritic knees at the time of primary TKA using the pre- operative CT scans. The aspect ratio and trapezoidicity ratio were quantified, and the post- operative prosthetic overhang was calculated. We compared the morphological characteristics with those of 12 TKA models.

There was significant variation in both the aspect ratio and trapezoidicity ratio between individuals. Femoral trapezoidicity was mostly due to an inward curve of the medial cortex. Overhang was correlated with the aspect ratio (with a greater chance of overhang in narrow femurs), trapezoidicity ratio (with a greater chance in trapezoidal femurs), and the tibio- femoral angle (with a greater chance in valgus knees).

This study shows that rectangular/trapezoidal variability of the distal femur cannot be ignored. Most of the femoral components which were tested appeared to be excessively rectangular when compared with the bony contours of the distal femur. These findings suggest that the design of TKA should be more concerned with matching the trapezoidal/ rectangular shape of the native femur.


M. Verstraete P. Meere G. Salvadore J. Victor P. Walker

A correct ligament loading following TKA surgery is believed to minimize instability and improve patient satisfaction. The evaluation of the ligament stress or strain is however impractical in a surgical setting. Alternatively, tibial trial components containing force sensors have the potential to indirectly assess the ligament loading. These instrumented components quantify the medial and lateral forces in the tibiofemoral joint. Although this method finds clinical application already, the target values for both the force magnitude and medial / lateral force ratio under surgical conditions remain uncertain.

A total of eight non-arthritic cadaveric knees have been tested mimicking surgical conditions. Therefore, the specimens are mounted in a custom knee simulator. This simulator allows to test full lower limb specimens, providing kinematic freedom throughout the range of motion. Knee flexion is obtained by lifting the femur (thigh pull). Knee kinematics are simultaneously recorded by means of a navigation system and based on the mechanical axis of the femur and tibia.

In addition, the load transferred through the medial and lateral compartment of the knee is monitored. Therefore, a 2.4 mm thick sawing blade is used to machine a slot in the tibia perpendicular to the mechanical axis, at the location of the tibial cut in TKA surgery. A complete disconnection was thereby assured between the tibial plateau and the distal tibia. To fill the created gap, custom 3D printed shims were inserted. Through their specific geometry, these shims create a load deviation between two Tekscan pressure pads on the medial and lateral side. Following the insertion of the shims, the knee was closed before performing the kinematic and kinetic tests.

Seven specimens showed a limited varus throughout the range of motion (ranging from 1° to 7° varus). The other knee was in valgus (4° valgus). Amongst varus knees, the results were very consistent, indicating high loads in full extension. Subsequently, the loads decrease as the knee flexes and eventually vanishes on the lateral side. This leads to consistently high compartmental load ratios (medial load / total load) in flexion.

In full extension the screw-home mechanism results in increased loads, both medially and laterally. Upon flexion, the lateral loads disappear. This is attributed to slackening of the lateral collateral ligament, in turn linked to the femoral rollback and slope of the lateral compartment. The isometry of the medial collateral ligament contributes on the other hand to the near-constant load in the medial compartment. The above particularly applies for varus knees. The single valgus knee tested indicated a higher load transmission by the lateral compartment, potentially attributed to a contracture of the lateral structures.

With respect to TKA surgery, these findings are particularly relevant when considering anatomically designed implants. For those implants, this study concludes that a tighter medial compartment reflects that of healthy varus knees. Be aware however that in full extension, higher and up to equal loads can be acceptable for the medial and lateral compartment.


J. Slane T. Heyse M. Dirckx P. Dworschak G. Peersman L. Scheys

Despite high success rates following total knee arthroplasty (TKA), knee kinematics are altered following TKA. Additionally, many patients report that their reconstructed knee does not feel ‘normal’ [1], potentially due to the absence of the anterior cruciate ligament (ACL), an important knee stabilizer and proprioceptive mechanism. ACL-retaining implants have been introduced with the aim of replicating native knee kinematics, however, there has yet to be a detailed comparison between knee kinematics in the native knee and one reconstructed with an ACL-retaining implant.

Six fresh-frozen right legs (77±10 yr, 5 male) were mounted in a kinematic rig and subjected to squatting (40°-105°) motions. The vertical positon of the hip was manipulated with a linear actuator to induce knee flexion while the quadriceps were loaded with an actuator to maintain a vertical load of 90 N at the ankle [2]. Medial/lateral hamstring forces were applied with 50 N load springs. During testing, an infrared camera system recorded the trajectories of spherical markers rigidly attached to the femur and tibia. Two trials were performed per specimen. Following testing on the native knee, specimens were implanted with an ACL-retaining TKA (Vanguard XP, Zimmer Biomet) and all trials were repeated. Three inlay thicknesses were tested to simulate optimal balancing as well as over- (1 mm thicker) and understuffing (1 mm thinner) relative to the optimal thickness.

Pre-operative computed tomography scans allowed identification of bony landmarks and marker orientation, which were used define anatomically relevant coordinate systems. The recorded marker trajectories were transformed to anatomical translations/rotations and resampled at increments of 1° of knee flexion. Translations of the medial and lateral femoral condyle centers were scaled to maximum anterior-posterior (AP) width of the medial and lateral tibial plateau, respectively. For all kinematics, statistical analysis between knee conditions was conducted using repeated measures ANOVA in increments of 10° knee flexion.

Internal rotation of the tibia was significantly lower (p<0.05) for the three reconstructed conditions relative to the native knee at flexion angles of 60° and below. No significant differences in tibial rotation were observed between the balanced, overstuffed, or understuffed conditions. The varus orientation was not significantly influenced by implantation, regardless of inlay thickness, for all flexion angles. At 40° flexion, the AP position of the femoral medial condyle was significantly more anterior for the native knee relative to the balanced and understuffed conditions. This finding was not significant for the other flexion angles. No significant differences were found for the lateral condyle center AP position at any flexion angle.

Preservation of the cruciate ligaments during total knee arthroplasty may allow better physiologic representation of knee kinematics. The implants tested in this study were able to replicate kinematics of the native knee, except for tibial rotation and AP position of the medial femoral condyle in early knee flexion. Interestingly, the impact of inlay thickness was generally small, suggesting some tolerance in the choice of inlay thickness.


C. Rivière D. Girerd M. Ollivier J.-N. Argenson S. Parratte

A principle of Total Knee Arthroplasty (TKA) is to achieve a neutral standing coronal alignment of the limb (Hip Knee Ankle (HKA) angle) to reduce risks of implant loosening, reduce polyethylene wear, and optimise patella tracking. Several long-term studies have questioned this because the relationship between alignment and implant survivorship is weaker than previously reported. We hypothesize standing HKA poorly predicts implant failure because it does not predict dynamic HKA, dynamic adduction moment, and loading of the knee during gait. Therefore, the aim of our study is to assess the relationship between the standing (or static) and the dynamic (gait activity) HKAs.

We performed a prospective study on a cohort of 35 patients (35 knees) who were treated with a posterior-stabilized TKA for primary osteoarthritis between November 2012 and January 2013. Three months after surgery each patient had a standardized digital full-leg coronal radiographs and was classified as neutrally aligned TKA (17 patients), varus aligned (9 patients), and valgus aligned (4 patients). Patients then performed a gait analysis for level walking and dynamic HKA and adduction moment during the stance phase of gait were measured.

We found standing HKA having a moderate correlation with the peak dynamic varus (r=0.318, p=0.001) and the mean and peak adduction moments (r=0.31 and r=-0.352 respectively). In contrast we did not find a significant correlation between standing HKA and the mean dynamic coronal alignment (r=0.14, p=0.449). No significant differences were found for dynamic frontal parameters (dynamic HKA and adduction moment) between patients defined as neutrally aligned or varus aligned.

In our practice, the standing HKA after TKA was of little value to predict dynamic behaviour of the limb during gait. These results may explain why standing coronal alignment after TKA may have limited influence on long term implant fixation and wear.


C. Belvedere A. Ensini S. Tamarri M. Ortolani A. Leardini

In total knee replacement (TKR), neutral mechanical alignment (NMA) is targeted in prosthetic component implantation. A novel implantation approach, referred to as kinematic alignment (KA), has been recently proposed (Eckhoff et al. 2005). This is based on the pre-arthritic lower limb alignment which is reconstructed using suitable image-based techniques, and is claimed to allow better soft-tissue balance (Eckhoff et al. 2005) and restoration of physiological joint function. Patient-specific instrumentation (PSI) introduced in TKR to execute personalized prosthesis component implantation are used for KA. The aim of this study was to report knee kinematics and electromyography (EMG) for a number lower limb muscles from two TKR patient groups, i.e. operated according to NMA via conventional instrumentation, or according to KA via PSI.

20 patients affected by primary gonarthrosis were implanted with a cruciate-retaining fixed-bearing prosthesis with patella resurfacing (Triathlon® by Stryker®, Kalamazoo, MI-USA). 17 of these patients, i.e. 11 operated targeting NMA (group A) via convention instrumentation and 6 targeting KA (group B) via PSI (ShapeMatch® by Stryker®, Kalamazoo, MI-USA), were assessed clinically using the International Knee Society Scoring (IKSS) System and biomechanically at 6-month follow-up. Knee kinematics during stair-climbing, chair-rising and extension-against-gravity was analysed by means of 3D video-fluoroscopy (CAT® Medical System, Monterotondo, Italy) synchronized with 4-channel EMG analysis (EMG Mate, Cometa®, Milan, Italy) of the main knee ad/abductor and flexor/extensor muscles. Knee joint motion was calculated in terms of flex/extension (FE), ad/abduction (AA), and internal/external rotation (IE), together with axial rotation of condyle contact point line (CLR).

Postoperative knee and functional IKSS scores in group A were 78±20 and 80±23, worse than in group B, respectively 91±12 and 90±15. Knee motion patterns were much more consistent over patients in group B than A. In both groups, normal ranges were found for FE, IE and AA, the latter being generally smaller than 3°. Average IE ranges in the three motor tasks were respectively 8.2°±3.2°, 10.1°±3.9° and 7.9°±4.0° in group A, and 6.6°±4.0°, 10.5°±2.5° and 11.0°±3.9° in group B. Relevant CLRs were 8.2°±3.2°, 10.2°±3.7° and 8.8°±5.3° in group A, and 7.3°±3.5°, 12.6°±2.6° and 12.5°±4.2° in group B. EMG analysis revealed prolonged activation of the medial/lateral vasti muscles in group A. Such muscle co-contraction was not generally observed in all patients in group B, this perhaps proving more stability in the knee replaced following the KA approach.

These results reveal that KA results in better function than NMA in TKR. Though small differences were observed between groups, the higher data consistency and the less prolonged muscle activations detected using KA support indirectly the claim of a more natural knee soft tissue balance.

References


S. Harris F. Dhaif F. Iranpour A. Aframian J. Cobb E. Auvinet S. Howell C. Rivière

Conventional TKA surgery attempts to restore patients to a neutral alignment, and devices are designed with this in mind. Neutral alignment may not be natural for many patients, and may cause dissatisfaction. To solve this, kinematical alignment (KA) attempts to restore the native pre-arthritic joint-line of the knee, with the goal of improving knee kinematics and therefore patient's function and satisfaction.

Proper prosthetic trochlea alignment is important to prevent patella complications such as instability or loosening. However, available TKA components have been designed for mechanical implantation, and concerns remain relating the orientation of the prosthetic trochlea when implants are kinematically positioned. The goal of this study is to investigate how a currently available femoral component restores the native trochlear geometry of healthy knees when virtually placed in kinematic alignment.

The healthy knee OAI (Osteoarthritis Initiative) MRI dataset was used. 36 MRI scans of healthy knees were segmented to produce models of the bone and cartilage surfaces of the distal femur. A set of commercially available femoral components was laser scanned. Custom 3D planning software aligned these components with the anatomical models: distal and posterior condyle surfaces of implants were coincident with distal and posterior condyle surfaces of the cartilage; the anterior flange of the implant sat on the anterior cortex; the largest implant that fitted with minimal overhang was used, performing ‘virtual surgery’ on healthy subjects.

Software developed in-house fitted circles to the deepest points in the trochlear grooves of the implant and the cartilage. The centre of the cartilage trochlear circle was found and planes, rotated from horizontal (0%, approximately cutting through the proximal trochlea) through to vertical (100%, cutting through the distal trochlea) rotated around this, with the axis of rotation parallel to the flexion facet axis. These planes cut through the trochlea allowing comparison of cartilage and implant surfaces at 1 degree increments. Trochlear groove geometry was quantified with (1) groove radial distance from centre of rotation cylinder (2) medial facet radial distance (3) lateral facet radial distance and (4) sulcus angle, along the length of the trochlea. Data were normalised to the mean trochlear radius. The orientation of the groove was measured in the coronal and axial plane relative to the flexion facet axis. Inter- and intra-observer reliability was measured.

In the coronal plane, the implant trochlear groove was oriented a mean of 8.7° more valgus (p<0.001) than the normal trochlea. The lateral facet was understuffed most at the proximal groove between 0–60% by a mean of 5.3 mm (p<0.001). The medial facet was understuffed by a mean of 4.4 mm between 0–60% (p<0.001).

Despite attempts to design femoral components with a more anatomical trochlea, there is significant understuffing of the trochlea, which could lead to reduced extensor moment of the quadriceps and contribute to patient dissatisfaction.


P. Varga D. Jenni J. Inzana B. Gueorguiev M. Blauth M. Windolf

The high risk and the associated high mortality of secondary, contralateral hip fractures [1,2] could justify internal, invasive prophylactic reinforcement of the osteoporotic proximal femur to avoid these injuries in case of a low energy fall. Previous studies have demonstrated high potential of augmentation approaches [3,4,5], but to date there has no ideal solution been found. The development of optimized reinforcement strategies can be aided with validated computer simulation tools that can be used to evaluate new ideas.

A validated non-linear finite element (FE) simulation tool was used here to predict the yield and fracture load of twelve osteoporotic or osteopenic proximal femora in sideways fall based on high resolution CT images. Various augmentation strategies using bone cement or novel metal implants were developed, optimized and virtually performed on the bone models. The relative strengthening compared to the non-augmented state was evaluated using case-specific FE analyses.

Strengthening effect of the cement-based augmentation was linearly proportional to cement volume and was significantly affected by cement location. With the clinically acceptable 12.6 ± 1.2 ml volume and optimized location of the cement cloud, compared to the non-augmented state, 71 ± 26% (42 – 134%) and 217 ± 166% (83 – 509%) increase in yield force and energy was reached, respectively. These were significantly higher than previously published experimental results using the “central” cement location [5], which could be well predicted by our FE models. The optimized metal implant could provide even higher strengthening effect: 140 ± 39% (76 – 194%) increase in yield force and +357 ± 177% (132 – 691%) increase in yield energy. However, for metal implants, a higher risk of subcapital fractures was indicated. For both cement and metal, the originally weaker bones were strengthened exponentially more compared to the stronger ones.

The ideal solution for prophylactic augmentation should provide an appropriate balance between the requirements of being clinically feasible, ethically acceptable and mechanically sufficient. Even with the optimized location, the cement-based approach may not provide enough strengthening effect and adequate reproducibility of the identified optimal cement cloud position may not be achieved clinically. While the metal implant based strategy appears to be able to deliver the required strengthening effect, the ethical acceptance of this more invasive option is questionable. Further development is therefore required to identify the ideal, clinically relevant augmentation strategy. This may involve new cement materials, less invasive metal implants, or a combination of both. The FE simulation approach presented here could help to screen the potential ideas and highlight promising candidates for experimental evaluation.


A. Sanghani Kerai L. Osagie M. Coathup G. Blunn

The current treatment for osteoporosis such as bisphosphonates inhibits the catabolic activity of osteoclasts and subsequent bone resorption, but does not increase bone formation. There is therefore interest in using anabolic factors such as stem cells to augment fracture repair. The poor bone formation in postmenopausal women could be due to poor retention and function of Mesenchymal stem cells (MSCs) resulting into delayed unions. Another factor associated with fracture healing is the retention and migration of stem cells to the site of injury (1–3). The aim of this study was to isolate stem cells from osteopenic rats and investigate and compare the CD marker expression, proliferation, migration, osteogenic and adipogenic differentiation. The hypothesis of this study is that the migration of MSCs from young, adult and ovariectomised (OVX) rats will have different proliferation, differentiation and migratory abilities.

Ovariectomy was performed in 6–9 month old Wistar rats and osteopenia developed over a 4 month post-op period. MSCs were harvested from the femora of young, adult and osteopenic Wistar rats. Proliferation of the these MSCs from the three group of rats was measured using Alamar blue, osteogenic differentiation was measured using ALP expression at day 0, 7, 14 and 21 and alizarin red at day 21. Adipogenic differentiation was measured at day 7, 14 and 21 using Oil red O. Cells were incubated in Boyden chambers to quantify their migration towards SDF1. For analysis, the number of cells migrating across the membrane was expressed as a percentage of the cells remaining on the upper membrane surface. Data was analysed using a Student t-test where p values < 0.05 were considered significant.

The stem cells from all 3 groups of rats expressed on average the same amount of CD29 (>90%), CD90 (>96%), CD34 (<5%) and CD45 (approx 10%). The proliferation rate measured by Alamar blue normalised against DNA was also similar at day 3, 7, 10 and 14. However, interestingly the migration and differentiation ability was significantly different between the MSCs from the 3 groups of rats. The young MSCs were not only better at differentiating into bone and fat as well, but they also migrated significantly more towards SDF1. The migration of SDF-1 doubled with young rats compared to the adult rats (p = 0.023) and it was four times higher when compared to cells isolated from OVX rats (p = 0.013).

MSCs from OVX rats are similar to MSCs from young rats. However when induced to turn into bone, fat and migrate towards SDF1, young MSCs are significantly more responsive than MSCs from OVX and adult control rats. The poor homing ability and differentiation of the stem cells and their retention may result in a reduction in bone formation leading to delayed union in fractures of osteoporotic patients(4).


J. Penny M. Speedsberg T. Kallemose J. Bencke

Increase in heel height increases peak pressure under the forefoot. Customized shoe inlays with metatarsal lift, arch support has demonstrated lowered forefoot pressure and increase in the subjective comfort. A commercial shoe brand (Roccamore) has introduced an off-the-rack stiletto with a slim (1 cm2) 8 cm heel plus 2 cm platform with metatarsal lift, arch support and heel cap claiming it will reduce the discomfort associated with high heels. The primary aim of this study was to compare the pressure under the forefoot, arch, heel and toes in this “orthopaedic” stiletto (OS) to a standard stiletto of the same heel height without inlays (SS) and a control sneaker (SN). Secondary aims were to measure the comfort under the forefoot, heel and arch during everyday use. Finally to investigate if any pressure measurements were correlated to comfort or any anatomical/clinical feature of the foot.

22 women, aged 40 (21–62), accustomed to stilettos, walked at 4 km/hr on a level treadmill in all three shoe types. Peak pressure (kPa) and pressure-time integral (kPa/sec) under 2+3rd and first metatarsal heads, the arch/midfoot and heel were measured during 10 consecutive steps at 50 Hz using Novel Pedar-X pressure distribution insoles. Standing X-rays and a standardized clinical examination were carried out. Mundermanns comfort VAS and daily steps were recorded for each shoe type during 3 full days. (0= worst to 150 mm= most comfortable). Data were compared with paired t-tests and regression analysis. Statistical significance is reported as p<0.05=, p<0.01=, p<0.001=.

Peak pressure: Compared to SS the peak pressure under the 2+3 metatarsals was reduced to 82% in the OS and 60% in the SN. Under the first metatarsal it was reduced to 73% and 40%, respectively. Under the arch it was similar for SN and OS and 30% lower for the SS. Under the heel the OS was 27–28% lower than SS and SN.

The same reductions, as well as similarities in the arch were seen in the pressure-time integrals, although with smaller difference between OS and SS, and conversely larger reductions in the SN to 49% under 2+3 metatarsals and 43% under the first.

For forefoot, arch and heel, the comfort was rated highest for the SN and lowest for the SS. No statistical difference between OS and SS in the arch.

For each mm the second metatarsal was longer than the first, the peak pressure under MT2+3 rose 13 kPa (95%CI: 7 to 19) and the pressure time integral 3 kPa/s (1–5). No effect of first ray ROM or stability. The forefoot VAS score dropped (less comfortable) 0.3 mm for each kPa/s the pressure time integral rose under the MT2+3. Peak pressure parameters or daily steps were not statistically significantly related to the forefoot comfort.

A mass produced “orthopaedic” stiletto can reduce the pressure approaching those achieved in a sneaker and increase comfort for the user. An increase in pressure-time integral under 2+3 metatarsals increases the discomfort and the pressure is increased in index-minus feet.


B. Gueorguiev J. Hagen K. Klos M. Lenz R.G. Richards P. Simons

Injury to the syndesmosis occurs in 10–13% of all operative ankle fractures and there is evidence that both incomplete treatment and malreduction of the syndesmosis can lead to poor clinical outcomes. Much attention has been given to post–operative malreduction documented by computer tomography (CT), however, there is limited data about the intact positioning and relative motion of the native syndesmosis. The aim of this study is to elucidate more detailed information on the position of the fibula in the syndesmosis during simulated weight–bearing in intact state, with sequential ligament sectioning and following two reconstructive techniques.

Fourteen paired, fresh–frozen human cadaveric limbs were mounted in a weight–bearing simulation jig. CT scans were obtained under simulated foot–flat loading (75 N) and in single–legged stance (700 N), in five foot positions: neutral, 15° external rotation, 15° internal rotation, 20° dorsiflexion, and 20° plantarflexion. The elements of the syndesmosis and the deltoid ligament were sequentially sectioned. One limb of each pair was then reconstructed via one of two methods: Achilles autograft and peroneus longus ligamentoplasty. The specimens were rescanned in all 5 foot positions following each ligament resection and reconstruction. Measurements of fibular diastasis, rotation and anterior–posterior translation were performed on the axial cuts of the CT scans, 1 cm proximal to the roof of the plafond.

Multiple measurements were made to define the position of the fibula in the incisura. Clinically relevant deformity patterns were produced. The deformity at the incisura was consistent with clinical injury, and the degree of displacement in all ligament states was dependent on the foot position. The most destructive state resulted in the most deformity at the syndesmosis. Differences between the intact and reconstructed states were found with all measurements, especially when the foot was in external rotation and dorsiflexion. There was no significant difference with direct comparison of the reconstructions.

This study has detailed the motion of the fibula in the incisura and its variation with foot position. Neither reconstruction was clearly superior and both techniques had difficulty in the externally rotated and dorsiflexed foot positions. This study design can serve as a model for future ex–vivo testing of reconstructive techniques.


J.A. Voesenek J.J. Arts J.P.S. Hermus

Total ankle replacement (TAR) is increasingly used in the treatment of end-stage ankle arthropathy, but much debate exists about the clinical result. The goals of present study are: 1) to provide an overview of the clinical outcome of 58 TAR's in a single centre and 2) to assess the association between radiological characteristics and clinical outcome.

We reviewed a prospective included cohort of 58 TAR's in 54 patients with a mean age of 66.9 (range 54–82) and a mean follow-up of 21.6 months (range 1.45–66.0). The TAR's where performed by a single surgeon in a single centre (MUMC) between 2010 and 2015, using the CCI ankle replacement. A standard surgical protocol and standardized post-op rehabilitation was used. Patients were followed-up pre-op and at 1 day, 6 weeks, 3–6–12 months and yearly thereafter post-op. The AOFAS and range of motion (ROM) were assessed and all complications, re-operations and the presence of pain were recorded. Radiographic assessment consisted of the estimation of prosthesis alignment, migration, translation and radiolucent lines using the Rippstein protocol (1). The clinical outcome was compared with a systematic review of TAR outcome.

Ten intra-operative complications occurred and 9 were malleolar fractures. Post-operative complications occurred in 20 out of the 54 patients (37.0%). Impingement (5/54 patients), deep infection (4/54 patients), delayed wound healing (3/54 patients) and minor nerve injuries (3/54 patients) were the most frequently recorded. 18 patients (31.0%) underwent one or more re-operations and 12 of these 18 patients underwent a component revision (mostly the PE insert) or a conversion to arthrodesis. Despite the complications and revisions, the functional outcome improved. Radiologically 15.8% of the TAR's were positioned in varus and 1.8% in valgus. Migration in the frontal and sagittal plane is seen in 3 and 2 TAR's respectively. Radiolucency is significantly increasing with the follow-up time (p=0.009). Migration in the frontal plane is significantly associated with conversion to arthrodesis (p=0.005) and migration in the sagittal plane to revision of a component or conversion to arthrodesis (p=0.04). Finally, pain is significantly associated with re-operations (p=0.023) and complications (p=0.026). Remarkable is that the clinical outcome is independent of the direct post-op alignment of the TAR.

The complication-, re-operation and revision or conversion to arthrodesis rates makes the clinical outcome of TAR still questionable favourable. Especially the complication and re-operation incidences are greater than found in the systematic review. However, it is remarkable that the minor complications and re-operations not related to the TAR are not often mentioned in the literature. Radiographic characteristics could be of value in predicting this clinical outcome and thereby influence the post-operative handling. In conclusion, our results show relatively high incidences of complications (37.0%) and re-operations (31.0%) when minor complications and re-operations are included. TAR clinical outcome can be predicted by radiographic migration characteristics and pain.


C.Y. Tan M.F. Mohd Fadil

Tenodesis effect and digital cascade of the foot were never described in the current literature. However, understanding of these effects are important in the diagnoses and managements of foot flexor tendon rupture and lesser toe deformities. We aim to investigate the presence of these effects in the foot with intact and cut tendons.

Ten fresh frozen cadaveric specimens were used in our study. 2nd, 3rdand 4thtoe metatarsophalangeal joint (MTPJ) and proximal interphalangeal joint (PIPJ) range of motion (ROM) at ankle resting position were measured. Same measurements were repeated with maximum ankle plantarflexion and dorsiflexion. 4thtoe Flexor Digitorum Longus (FDL) was then identified over plantar aspect of metatarsal shaft and cut transversely. 2nd, 3rdand 4thtoe MTPJ and PIPJ ROM at ankle resting position, maximum plantarflexion and dorsiflexion were then measured.

Mean 4thtoe MTPJ and PIPJ ROM at ankle dorsiflexion were 13.5 ° of dorsiflexion and 25 ° of plantarflexion respectively, compared with values at ankle plantarflexion which were 35 ° and 25 ° respectively. After 4thtoe FDL was cut, mean 4thtoe MTPJ and PIPJ ROM at ankle dorsiflexion were 14 ° and 24 ° respectively and at ankle plantarflexion the values were 34.5 ° and 25 ° respectively. At ankle resting position before 4thFDL was cut, mean 4thtoe MTPJ and PIPJ ROM were 22 ° and 31 ° respectively, compared with the values after 4thFDL was cut, ie 22.5 ° and 30.5 ° respectively.

Tenodesis effect of the foot was shown in our study. However unlike in hand, this effect was only present in MTPJ and was still present following cut FDL. Similarly, digital cascade was still present following cut FDL. The maintenance of tenodesis effect and digital cascade following cut flexor tendon is likely contributed by various soft tissue restraints and intrinsic muscle actions. These findings are important in both the diagnosis and management of foot flexor tendon rupture and help us to better understand the biomechanics of lesser toe deformities and the managements of these deformities.


S. Somodi K.H. Andersen L.B. Ebskov P.B. Rasmusen O. Muharemovic J.Ø. Penny

The CCI mobile bearing ankle implant used at our orthopedic department 2010–2013, was abandoned due to failures and findings of bone loss at revision. The aim of this study was to a) Determine our true revision rate, b) Investigate accuracy of measuring prevalence, size and location of periprosthetic bone cysts through X-ray and CT and c) Relate these findings to implant alignment and patient reported outcome measurements (PROMs).

51 primary surgeries were performed, prior to this study 8 had been revised. Out of 43 un-revised patients, 36 were enrolled and underwent evaluation with metal artefact reduction CT-scans and conventional X-ray. They filled out 3 PROMs; SEFAS, SF-12, EQ-5D. Cyst volume larger than 0.1 ml was measured using VITREA volume tools for CT-scans and calculation of spherical volume for X-rays; using AP- and lateral projections. Location of lesions was recorded, according to their position relative to the implant. Medial-/lateral- and anterior-/posterior tilt of the implant parts was measured using IMPAX built in measuring tools, applied to AP- and lateral X-ray projection. The relation between lesions location and alignment of components was analyzed by logistic regression. Bias and ICC estimation between CT and X-ray was analyzed by mixed effect model. Log transformation was used to fit the normal distribution assumption. PROMs association to osteolytic volume was analyzed by linear- and logistic regression. P-values of 0.05 were considered statistically significant.

Finding large osteolytic lesions caused 4 additional patients to undergo revision and 7 are being monitored due to high risk of failure. Of the original 51 implants 14 have been revised. 8 cases because of osteolytic lesions and aseptic loosening (true revisions w. exchange of components or bone transplants), 3 periprosthetic fractures (2 non-traumatic fractures) and 3 cases of exostosis. The 3- and 5 year revision rate was 14% and 16% for true revisions and 17% and 27% overall. Cystic lesions were found in 81% of participants. Total cyst-volume was on average 13% larger on X-ray, however this difference was not significant (p = 0.55), with intraclass correlation being 0.66. Total cystic volume was not significantly related to PROM-scores (P 0.16–0.5). Location of cysts showed association with alignment of components (P 0.02–0.08). Mean tibia component anterior tilt was 89 degrees (SD 4). Mean medial tilt was 91 degrees (SD 3) for the tibial and 90 degrees (SD 4) for the talar component.

The implant investigated performs below standard, compared to public registries1, 2that report overall 5 year revision rates at 5 – 6.5%. We obtained larger measurements from X-rays than CT, unlike previous studies comparing these modalities. Cysts were common and large. Correlation between lesion location and alignment of implant, with valgus and anterior tilt of components causing more lesions in adjacent zones, may suggest a link between implant failure and alignment of components.


E. Lenguerrand M. Whitehouse A. Beswick S. Jones M. Porter A. Toms A. Blom

Prosthetic joint infection (PJI) is an uncommon but serious complication of hip and knee replacement. We investigated the rates of revision surgery for the treatment of PJI following primary and revision hip and knee replacement, explored time trends, and estimated the overall surgical burden created by PJI.

We analysed the National Joint Registry for England and Wales for revision hip and knee replacements performed for a diagnosis of PJI and their index procedures from 2003–2014. The index hip replacements consisted of 623,253 primary and 63,222 aseptic revision hip replacements with 7,642 revisions subsequently performed for PJI; for knee replacements the figures were 679,010 primary and 33,920 aseptic revision knee replacements with 8,031 revisions subsequently performed for PJI. Cumulative incidence functions, prevalence rates and the burden of PJI in terms of total procedures performed as a result of PJI were calculated.

Revision rates for PJI equated to 43 out of every 10,000 primary hip replacements (2,705/623,253), i.e. 0.43%(95%CI 0.42–0.45), subsequently being revised due to PJI. Around 158 out of every 10,000 aseptic revision hip replacements performed were subsequently revised for PJI (997/63,222), i.e. 1.58%(1.48–1.67). For knees, the respective rates were 0.54%(0.52–0.56) for primary replacements, i.e. 54 out of every 10,000 primary replacements performed (3,659/679,010) and 2.11%(1.96–2.23) for aseptic revision replacements, i.e. 211 out of every 10,000 aseptic revision replacements performed (717/33,920). Between 2005 and 2013, the risk of revision for PJI in the 3 months following primary hip replacement rose by 2.29 fold (1.28–4.08) and after aseptic revision by 3.00 fold (1.06–8.51); for knees, it rose by 2.46 fold (1.15–5.25) after primary replacement and 7.47 fold (1.00–56.12) after aseptic revision. The rates of revision for PJI performed at any time beyond 3 months from the index surgery remained stable or decreased over time.

From a patient perspective, after accounting for the competing risk of revision for an aseptic indication and death, the 10-year cumulative incidence of revision hip replacement for PJI was 0.62%(95%CI 0.59–0.65) following primary and 2.25%(2.08–2.43) following aseptic revision; for knees, the figures were 0.75%(0.72–0.78) following primary replacement and 3.13%(2.81–3.49) following aseptic revision.

At a health service level, the absolute number of procedures performed as a consequence of hip PJI increased from 387 in 2005 to 1,013 in 2014, i.e. a relative increase of 2.6 fold. While 70% of those revisions were two-stage, the use of single stage revision increased from 17.6% in 2005 to 38.5% in 2014. For knees, the burden of PJI increased by 2.8 fold between 2005 and 2014. Overall, 74% of revisions were two-stage with an increase in use of single stage from 10.0% in 2005 to 29.0% in 2014.

Although the risk of revision due to PJI following hip or knee replacement is low, it is rising. Given the burden and costs associated with performing revision joint replacement for prosthetic joint infection and the predicted increased incidence of both primary and revision hip replacement, this has substantial implications for service delivery.


I. Reeder M. Lipperts I.C. Heyligers B. Grimm

Eliminating pain and restoring physical activity are the main goals of total hip arthroplasty (THA). Despite the high relevance of activity as a rehabilitation goal of and criterion for discharge, in-hospital activity between operation and discharge has hardly been investigated in orthopaedic patients.

Therefore, the aim of this study was to a) measure for reference the level of in-hospital physical activity in patient undergoing a current rapid discharge protocol, b) compare these values to a conventional discharge protocol and c) test correlations with pre-operative activities and self-reported outcomes for possible predictors for rapid recovery and discharge.

Patients (n=19, M:F: 5:14, age 65 ±5.7 years) with osteoarthritis treated with an elective primary THA underwent a rapid recovery protocol with discharge on day 3 after surgery (day 0). Physical activity was measured using a 3D accelerometer (64×25×13mm, 18g) worn on laterally on the unaffected upper leg. The signal was analysed using self-developed, validated algorithms (Matlab) calculating: Time on Feet (ToF), steps, sit-stand-transfers (SST), mean cadence (steps/min), walking bouts, longest walk (steps).

For the in-hospital period (am: ca. 8–13h; pm: ca. 13–20h) activity was calculated for day 1 (D1) and 2 (D2). Pre-operative activity at home was reported as the daily averages of a 4-day period. Patient self-report included the HOOS, SQUASH (activity) and Forgotten Joint Score (FJS) questionnaires.

In-hospital activity of this protocol was compared to previously collected data of an older (2011), standard conventional discharge protocol (day 4/5, n=40, age 71 ±7 years, M:F 16:24).

All activity parameters increased continuously between in-hospital days and subsequent am and pm periods. E.g. Time-on-feet increased most steeply and tripled from 21.6 ±14.4min at D1am to 62.6 ±33.4min at D2pm. Mean Steps increased almost as steep from 252 to 655 respectively. SST doubled from 4.9 to 10.5. All these values were sign. higher (+63 to 649%) than the conventional protocol data.

Cadence as a qualitative measure only increased slowly (+22%) (34.8 to 42.3steps/min) equalling conventional protocol values. The longest walking bout did not increase during the in-hospital period. Gender, age and BMI had no influence on in-hospital activity.

High pre-op activity (ToF, steps) was a predictor for high in-hospital activity for steps and SST's at D2pm (R=0.508 to R=0.723). Pre-op self-report was no predictor for any activity parameter.

In-hospital recovery of activity is steep following a cascade of easy (ToF) to demanding (SST) tasks to quality (cadence). High standard deviations show that recovering activity is highly individual possibly demanding personalised support or goals (feedback).

Quantitative parameters were all higher in the rapid versus the conventional discharge protocol indicating that fast activation is possible and safe. Equal cadence for both protocols shows that functional capacity cannot be easily accelerated.

Pre-op activity is only a weak predictor of in-hospital recovery, indicating that surgical trauma affects patients similarly, but subjects may be identified for personalized physiotherapy or faster discharge.

Reference values and correlations from this study can be used to optimize or shorten in-hospital rehabilitation via personalization, pre-hab, fast-track surgery or biofeedback.


G. Perino B. Ricciardi C. Von Rhuland E. Purdue Z. Xia

Increased failure rates due to metallic wear particle-associated adverse local tissue reactions (ALTR) is a significant clinical problem in resurfacing and total hip arthroplasty. Histological analysis and particle characterization are important elements for understanding the biological mechanisms of the reaction and different histological subtypes may have unique needs for longitudinal clinical follow-up and complication rates after revision arthroplasty.

Consecutive patients (N=285 cases) presenting with ALTR from three major hip implant classes, metal-on-metal resurfacing and total hip arthroplasty (THA) and non-metal-on-metal THA with dual modular neck were identified from our prospective Osteolysis Tissue Database and Repository and 53 cases were selected for wear particle nano-analysis.

Conventional histology: Tissue samples taken from multiple regions around the hip with extensive sampling performed at macroscopic examination were examined by light microscopy.

Particle analysis: Tissue samples selected after frozen section evaluation for cellularity and particle content were examined by scanning electron microscopy (SEM), backscatter scanning electron microscopy (BSEM), BSEM-energy-dispersive X-ray spectroscopy (EDS) element mapping examination, transmission electron microscopy (TEM), TEM-EDS element mapping, and X-ray diffraction spectrometry (XRD) examination.

ALTR encompasses three main histological patterns: 1) macrophage predominant, 2) mixed lymphocytic and macrophagic, and 3) predominant sarcoid-like granulomas. Duration of implantation and composition of periprosthetic cellular infiltrates was significantly different among the three implant types examined. Distinct differences in the size, shape, and element composition of the metallic particulate material were detected in each implant class, with correlation of the severity of the adverse reaction with element complexity of the particles.

ALTR encompasses a diverse range of histological patterns, which are reflective of both the implant configuration independent of manufacturer and clinical features such as duration of implantation. Distinct differences in the metallic particulate material can contribute to explain the histological features of the ALTR and variability of performance of the implants.

ALTR exhibits different histological patterns and is dependent on the characteristics of the wear particulate material of each implant class and host immunological reaction.


J. Penny M. Ding O. Ovensen S. Overgaard

The metal on metal implants was introduced without the proper stepwise introduction. The ASR resurfacing hip arthroplasty (RHA) withdrawn due to high clinical failure rates and the large diameter head THA (LDH-THA) are also widely abandoned. Early (2 year) radiostereometry studies does not support early instability as cause of failure but more likely metal wear products. A possible advantage may be maintenance of bone mineral density (BMD).

We present 5 year prospective follow up from a randomized series, aiming to report changes from baseline and to investigate links between implant micromotion, Cr & Co ions and BMD.

Patients eligible for an artificial hip were randomized to RHA, Biomet LDH-THA or standard Biometric THA. 19, 17 and 15 patients completed 5 year follow-up. All followed with BMD of the femur, acetabulum and for RHA the collum. RHA and THA with whole blood Co and Co. LDH-THA only at 5 year. RHA had marker based RSA of both components, cup only for LDH-THA. Translations were compiled to total translation (TT= √(x2+y2+z2)). Data were collected at baseline, 8 weeks, 6 months, 1, 2 and 5 years.

Statistical tests: ANCOVA for TT movement, Spearman's correlation for BMD, Cr, Co and BMI to TT at 5 years

RSA: The 5 year median (25%to75%) RHA cup translations were X=-0.00(−0.49 to 0.19) Y=0.15(−0.03 to 0.20), z=0.24(−0.42 to 0.37) and TT 0.58 (0.16 to 1.82) mm. For the LDH-THA X=−0.33(−0.90 to 0.20) Y=0.28(0.02 to 0.54), z=0.43(−1.12 to −0.19) and TT 1.06 (0.97 to 1.72) mm. The TT was statistically different (p<0.05) for the two cups. The RHA femoral component moved X=0.37(0.21 to 0.56) Y=0.02(−0.07 to 0.11), z=-0.01(−0.07 to 0.26) and TT 0.48 (0.29 to 0.60) mm at 5 years. There was no TT movement from year 2.

The mean (SD) acetabular BMD was diminished to 93(90–97)% for RHA and 97(93–99.9)% for THA, but LDH-THA maintained 99(95–103)%. Overall femoral BMD was unchanged at 5 years for all interventions, but both stemmed implants lost 17% at the calcar.

Median (25%to75%) whole-blood Cr peaked in the LDH-THA group with 1.7 (0.9 to 3.1) followed by RHA 1.2 (0.8 to 5.0) and THA with 0.5 (0.4 to 0.7)ppb.

For Co the highest levels were found in RHA with 1.6(0.8 to 4.7) followed by LDH-THA 1.2 (0.7–1.7) and THA 0.2 (0.2 to 0.6) ppb.

The only correlations above +/−0.3 for TT were the RHA femoral component with a correlation of 0.47 to BMI, 0.30 to Co and Cr. The ASR cup conversely had a negative correlation of −0.60 to BMI and again, the LDH-THA cup had a negative correlation of −0.37 to Cr.

In contrast to registered revision rates, we found significantly larger movement for the Biomet cup than the ASR cup. The metal ion levels were similar. The LDH-THA cup maintained the acetabular BMD best at 5 years, but the difference was small, we are limited by small numbers and the correlations between TT and the covariates showed no clear pattern.


P.D. Parchi L. Andreani F. Cutolo M. Carbone V. Ferrari M. Ferrari M. Lisanti

Aim of the study was the evaluation of the efficacy of the use of a new wearable AR video see-throught system based on Head Mounted Displays (HMDs) to guide the position of a working cannula into the vertebral body through a transpedicular approach without the use X-Ray images guidance.

We describe a head mounted stereoscopic video see-through display that allows the augmentation of video frames acquired by two cameras with the rendering of patient specific 3D models obtained on the basis of pre-operative radiological volumetric images. The system does not employ any external tracker to detect movements of the user or of the patient. User's head movements and the consistent alignment of the virtual patient with the real one, are accomplished through machine vision methods applied on pairs of live images.

Our system has been tested on an experimental setup that simulate the reaching of lumbar pedicle as in a vertebral augmentation procedure avoiding the employment of ionizing radiation. Aim of the study is to evaluate the ergonomics and the accurancy of the systems to guide the procedure. We performed 4 test sessions with a total of 32 kirschner wire implanted by a single operator wearing the HMD with the AR guide. The system accurancy was evaluated by a post-operative CT scan.

The most ergonomic AR visualization comprise the use of a pair of virtual viewfinders (one at the level of the skin entry point and one at the level of the trocar's bottom) aligned according to the planned direction of the trocar insertion. With such AR guide the surgeon must align the tip of the needle to the center of the first viewfinder placed on the patient's skin. indeed the viewfinder barycenter provides a 2 degrees of freedom (DoFs) positioning guide corresponding to the point of insertion preoperatively planned over the external surface of the model. The second viewfinder is used by the surgeon to rotate and align the trocar according to the planned direction of insertion (2 rotational DOFs). After the first test series a clamping arm has been introduced to maintain the reached trocar's trajectory.

The post-operative CT scan was registered to the preoperative one and the trajectories obtained with the AR guide were compared to the planned one. The overal results obtained in the 4 test session show a medium error of 1.18+/−0.16 mm.

In the last year there was a growing interest to the use of Augmented Reality systems in which the real scene watched by the surgeon is merged with virtual informations extracted from the patient's medical dataset (medical data, patient anatomy, preoperative plannig). Wearable Augmented Reality (WAR) with the use of HDMs allows the surgeon to have a “natural point of view” of the surgical field and of the patient's anatomy avoiding the problems related to eye-hand coordination.

Results of the in vitro tests are encouraging in terms of precision, system usability and ergonomics proving our system to be worthy of more extensive tests.


M. Peters B. Brans R. Wierts L. Jutten T. Weijers W. Broos F. Mottaghy L. van Rhijn P. Willems

The clinical success of posterior lumbar interbody fusion (PLIF) may be limited by pseudarthrosis, defined as the absence of solid fusion 1 year after surgery. Currently, CT is used to diagnose pseudarthrosis but is not able to be conclusive earlier than 1 year after surgery. No non-invasive technique is available to reliably assess bone graft incorporation in the early phase after PLIF.

Positron Emission Tomography (PET) is a nuclear imaging modality that is able to identify changes at the cellular and molecular level in an early stage, well before manifestation of anatomical changes. PET/CT with the bone seeking tracer 18F-fluoride allows localization and quantification of bone metabolism.

This study investigates whether an 18F-fluoride PET/CT scan early after PLIF is able to predict the fusion status at 1 year postoperative on CT.

Twenty patients after PLIF were enrolled after written informed consent. At 6 weeks and at 1 year after PLIF, intravenous injection of 18F-fluoride was followed by a static scan at 60 minutes (Philips, Gemini TF PET/CT). Processing of images resulted in a bone metabolism parameter i.e. standardized uptake value (SUV). This parameter was determined for 3 regions of interest (ROIs): the intervertebral disc space (IDS) and the upper and lower endplate (UE and LE, respectively) of the operated segment.

Interbody fusion was scored on a diagnostic CT scan made 1 year postoperatively and was defined as the amount of complete bony bridges between vertebrae, i.e 0, 1 or 2. Based on these scores, patients were divided in either the pseudarthrosis group (score 0) or the fusion group (scores 1 and 2). Differences between groups were analyzed using the independent samples Mann-Whitney U-test.

Ten patients were classified as pseudarthrosis (0 bridges: n=10) and 10 patients as fused (1 bridge: n=5, 2 bridges: n=5).

Patients in the pseudarthrosis group showed significantly lower bone metabolism values in the IDS on the 6 weeks PET/CT scan compared to patients in the fusion group (SUVIDS,6w13.3±5.62 for pseudarthrosis and 22.6±6.42 for the fusion group, p=0.003), whereas values at the endplates were similar (SUVUE,6w20.3±5.85 for pseudarthrosis and 21.6±4.24 for the fusion group, p=0.282). Furthermore, only in the pseudarthrosis group, bone metabolism in the IDS was significantly lower than at the endplates (p=0.006). In the fusion group, bone metabolism in the IDS and at the endplates was similar (p=0.470).

The PET/CT scan at 1 year postoperative showed that in the pseudarthrosis group, bone metabolism of the IDS remained lower compared to the endplates (SUVIDS,1y13.2±4.37, SUVUE,1y16.4±5.33, p=0.004), while in the fusion group, IDS and endplate bone metabolism was similar (SUVIDS,1y13.6±2.91, SUVUE,1y14.4±3.14, p=0.397).

This study shows that low bone metabolism values in the IDS of the operated segment as seen on 18F-fluoride PET/CT 6 weeks after PLIF, is related to development of pseudarthrosis 1 year postoperatively. These results suggest that 18F-fluoride PET/CT might be an early diagnostic tool to identify patients prone to develop pseudarthrosis after PLIF.


G. Barbanti Brodano M. Fini S. Bandiera A. Gasbarrini S. Terzi R. Ghermandi L. Babbi M. Girolami G. Giavaresi S. Boriani

Spinal fusion is one of the most common surgical procedures in spine surgery, whose primary objective is the stabilization of the spine for the treatment of many degenerative, traumatic and oncological diseases of the spine. Autologous bone is still considered the “gold standard” technique for spinal fusion. However, biomaterials which are potentially osteogenic, osteoinductive and osteoconductive can be used to increase the process of spinal fusion. We evaluated two new bone substitutes as an alternative to autologous bone for spinal fusion, using an animal model of large size (adult sheep).

A preclinical study was designed to compare the efficacy of SINTlife® Putty and DBSINT® biomaterials with conventional bone autograft in an ovine model of lumbar spine fusion. SINTlife® is a biomaterial made from hydroxyapatite enriched with magnesium ions, resulting to be very similar to natural bone. DBSint® is a paste composite bone, osteo-inductive, pliable and conformable, consisting of demineralized bone matrix (DBM) carried by hydroxyapatite biomimetics. Eighteen adult female sheep were selected for two-levels spine surgical procedures. The animals were divided in two groups: in Group A, one fusion level was treated with SINTlife® Putty and the other level received cortical-cancellous bone autograft; in Group B, one fusion level was treated with DBSINT® and the other level received cortical-cancellous bone autograft. At the end of the experimental time, all the animals were euthanized. The spine segments were analyzed macroscopically, radiographically, microtomographically, histologically and histomorphometrically.

The SINT-Life® Putty shows a perfect osteointegration in all the histological specimens. A high percentage of newly formed bone tissue is detected, with lots of trabeculae having structure and morphology similar to the pre-existing bone. In all the specimens collected from DBSINT®-treated animals the presence of hydroxyapatite alone is reported but not the demineralized bone matrix. The presence of newly formed bone tissue can be detected in all the specimens but newly formed bone shows very thin and irregular trabeculae next to the cartilage zone, while away from the border of ossification there are thicker trabeculae similar to the pre-existing bone.

The use of the experimental biomaterial SINT-Life® Putty in an ovine model of spine fusion leads to the development of newly formed bone tissue without qualitative and quantitative differences with the one formed with autologous bone. The experimental material DBSINT® seems to lead to less deposition of newly formed bone with wider intertrabecular spaces. Following these results, we planned and submitted to the Ethical Committee a clinical study to evaluate the safety and efficacy of SINT-Life® product in comparison to autologous bone, as an alternative treatment for spine fusion procedures.


G. Barbanti Brodano J. Halme A. Gasbarrini S. Bandiera S. Terzi R. Ghermandi L. Babbi S. Boriani

The surgical treatment of spinal deformities and degenerative or oncological vertebral diseases is becoming more common. However, this kind of surgery is complex and associated to a high rate of early and late complications. We retrospectively collected all the major complications observed in the perioperative and post-operative period for surgeries performed at our Division of Spine Surgery in the 2010–2012 period,

285 surgeries were registered in 2010, 324 in 2011 and 308 in 2012. All the complications observed during the procedure and the follow-up period were recorded and classified according to the type (mechanical complications, neurological complications, infection, hematoma, cerebrospinal fluid fistula, systemic complications, death related to the surgery).

In 2010, on 285 surgeries 47 patients (16.5 %) had 69 complications (24.2%): 25.7% for the treatment of oncological diseases, 23% for the treatment of degenerative diseases, 27% for the treatment of pathologies of traumatic origin, 11% for the treatment of spondylodiscitis (infectious diseases). In 2011, on 324 surgeries 35 patients (10.8 %) had 54 complications (16.7%): 16.3% for the treatment of oncological diseases, 16.3% for the treatment of degenerative diseases, 20% for the treatment of pathologies of traumatic origin, 28.6% for the treatment of spondylodiscitis. In 2012, on 308 surgeries, 25 patients (8.1 %) had 36 complications (11.7%): 14.4% for the treatment of oncological diseases, 7.2% for the treatment of degenerative diseases, 16.7% for the treatment of pathologies of traumatic origin, 20% for the treatment of spondylodiscitis.

On 917 spinal surgeries performed from January 2010 to December 2012, 159 complications (17.3%) were recorded, with a prevalence of mechanical complications and infections.

We are also prospectively collecting complications related to 2013–2015, in order to have a larger amount of data and try to detect potential risk factors to be taken into consideration in the decision-making process for complex spinal surgery.


F. Raggini F. Boriani A. Evangelista P. Morselli

The collagenase of Clostridium Histolyticum enzyme infiltration is a mini-invasive treatment method for Dupuytren's disease which has emerged in recent years as an alternative to traditional surgery (selective aponeurectomy). Although both treatments are effective in the long term, a wider use of the enzyme is spreading worldwide. Indications and protocol of administration of collagenase are strictly regulated by the Italian Drug Administration Agency (AIFA). In the present study an off-label use of this medication has been experienced, in terms of wider indications and more numerous infiltration sites in the same cord (Multipoint technique) and in additional cords affecting other digits (Multicord technique).

All patients suffering from Dupuytren's disease and accessing the Hand Surgery outpatient at Rizzoli Institute were considered for the study, between february 2014 and february 2016. Inclusion criteria were Dupuytren's disease and a positive tabletop test. The collagenase injection was indicated for degrees of passive extension deficit (PED) higher than AIFA regulations (MCPJoints >50° and PIPJoints >45°). These patients were compared with the same PED subgroup of surgical patients who were treated through aponeurectomy. Since the drug is dispensed in vials of 0.90 mg, but according to the protocol only 0.58 mg are to be infiltrated, the injection of the remaining 0.32 mg that would otherwise remain unused was experienced. Therefore, in patients who had only one pathological cord in the hand, the first point of the cord to be treated was inoculated with 0.58 mg, according to standards, while two additional points were selected along the fibrosis and injected with the remaining 0, 32 mg. This group was compared with patients treated with the traditional 0.58 mg only on a single cord.

In patients in whom the presence of more than a single pathological cord was found, the worse lesion was injected with the usual 0.58 mg as by legislation and the second cord was infiltrated with the 0.32 mg residue and the results obtained within the second cord were compared with those achieved with the usual dose of 0.58 mg. The endpoints considered were the perioperative variations of passive extension deficit (PED) and range of motion (ROM), both expressed as degrees. Data were statistically analyzed in order to find any possible significance in the comparison of groups.

Comparing the surgical patients with those treated with collagenase, for the same degrees but higher than AIFA reference, both methods showed a reduction of contracture by at least 50% at 30 days and an improvement of ROM (p>0.05), with fewer complications in those treated enzymatically (p<0.01). Infiltrating the whole dose of collagenase (0.90 mg) through the multipoint mode, has enabled an easier handling of the cord at 24 hours post-injection, a reduction in contracture of at least 50% at 30 days allowing a dowstaging of the disease and a better and faster recovery of hand function, than the classic treatment, although these results are not statistically significant (p>0.05). For degrees of contractures within AIFA indications for collagenase, the 0.32 mg dose is sufficient to cause the lysis of a cord with similar results compared to the greater AIFA-recommended dose of 0.58, in terms of all considered endpoints, with no statistically significant difference (p >0.01).

This study confirms the success of treatment with collagenase compared to surgical treatment, in terms of efficacy, safety, more rapid recovery and less invasiveness. In addition, through further clinical studies, AIFA regulations can be gradually safely and effectively extended in terms of a progressive widening of indications and modalities including:

Indication to collagenase for PED higher than 50° (MCP joints) or 45° (PIP joints)

Multiple injections in the same cord with the whole content of the vial (0.90 mg)

Injections in multiple cords with the whole content of the vial (0.90 mg)


M. Dasouki B. Toby A.A. Alaiya I. Saadi

Dupuytren Disease (DD), the most common connective tissue disease in man, presents as a benign fibromatosis of the hands and fingers resulting in the formation of nodules and cords and often leading to flexion contractures in association with keloids or Peyronie disease. Surgical resection of the fibrotic nodules, and more recently intra-lesional collagenase injection are the main therapeutic options for these patients. While the exact cause of DD is still unknown, linkage and Genome Wide Association Studies (GWAS) showed molecular heterogeneity with at least 10 different susceptibility loci 6 of which are close to genes encoding proteins in the Wnt-signaling pathway. We aim to identify the molecular basis of Dupuytren Disease (DD).

Twenty patients with Dupuytren disease (including 3 patients with autosomal dominant inheritance, 1 with keloids and congenital torticollis, 2 with Peronie disease), were included in this study. Chromosome Microarray Analysis (CMA), Whole Exome Sequencing (WES) of gDNA and proteomic analysis by LC-Tandem Mass Spectrometry (LC-MSMS) studies were performed. Expression and Network analysis of LCMSMS results was performed using Principal Component Analysis (PCA), ANOVA and Ingenuity Pathway Analysis (IPA).

No pathogenic copy number variants (CNVs) were found in CMA (n = 3). WES showed potentially pathogenic variants in POSTN, WNT11, MMP1 and COL3A1. PCA showed three differentially expressed clusters and network-IPA identified ACTB, BAX, COL3A1, FBN1, FN1, MMP1 as potential biomarkers.

Comprehensive multi-OMIC analysis of gDNA and tissue proteins in patients with DD identified several connective tissue biomarkers potentially important in the pathogenesis of DD.


A. Anand L. Li D. Trigkilidas A. Patel

We performed a systematic review to compare outcomes of cemented versus uncemented trapezio-metacarpal joint (TMCJ) replacement for treatment of base-of-thumb arthritis.

We assessed improvements in pain and function, range of movement (ROM), strength, complications and need for revision surgery. A thorough literature search was performed. A total of 481 studies were identified from the literature search (179 Medline, 253 Embase, 27 CINAHL, 22 Cochrane). Of 43 relevant titles 28 were selected for full-text review after assessment of the abstracts. Duplicate studies were removed. 18 studies met inclusion criteria on full-text review. All studies were of level IV evidence. There were no randomised controlled trials or meta-analyses. The studies were critically appraised using a validated scoring system.

Most studies reported good outcomes for pain and strength, and functional outcome was comparable for both groups. ROM was generally improved for both prosthetic types, however statistical calculation was lacking in many studies. Trapezial component loosening was the main problem for both cemented and uncemented prostheses, however radiological loosening did not necessarily correlate with implant failure.

This systematic review has found that both cemented and uncemented replacements generally give good outcomes for the treatment of TMCJ arthritis, however young, male, patients with manual occupations and with disease in the dominant hand and patients with poor trapezial bone stock appear to be at higher risk for implant failure due to cup loosening. We recommend the construction of a joint registry to record implantation and revision rates.


F. Boriani L. Savarino C. Fotia N. Zini N. Fazio N. Nicoli Aldini L. Martini M. Bernardini M. Fini N. Baldini

For unrepairable nerve defects, to date autogenous nerves are considered the golden standard, but donor site morbidity, limited availability and operation time prolongation are relevant problem. Acellular nerves from cadaveric donor, introduced since more than one decade ago, represent a novel promising alternative to bridge unrepairable nerve gaps.

Aim of this study is to provide a new tool to ameliorate the assistance of the numerous patients suffering from traumatic, oncological and jatrogenic nerve lesions. For this purpose, our project is promoting a progress beyond the state of the art of nerve gaps bridging surgery by developing a new technique to obtain acellular nerve allografts (ANAs).

Several methods to examine the effect of detergents on nerve tissue morphology and protein composition have been previously reported. Most of them are too expensive and time consuming. The presented novel decellularization technique is a modification of the Michigan detergent-based organic material removal, to speed up myelin and cellular debris detachment. The previously published Hudson's method1has been chosen as control of the decellularization process). To validate the new nerve decellularization method, in terms of histological characteristics, outcomes were estimated through morphological and immunohistochemical studies in vitro and in vivo. The in vivo study consisted of a 1 cm defect in the tibial nerve of 3 new Zealand rabbits. This nerve defect was microsurgically replaced with a “Rizzoli” acellular nerve allograft. Rabbits were sacrificed 12 weeks after surgery. Endpoints were nerve conduction studies and histology.

Histological analysis of processed acellular nerve have been performed to evaluate the preservation of the structure and almost complete clearance of donor cells and cellular debris. Immunostaining analysis confirmed absence of Schwann cells and the maintenance of basal lamina. In vivo studies showed an effective and abundant nerve regeneration through the microsurgically reconstructed nerve defects. This was histologically proven. However no electophysiological return of function was showed.

The novel method will allow the storing of acellular nerve allografts. First results obtained by morphological analysis and immunofluorescence experiments and in vivo studies indicate that the internal structure of native nerve is maintained. It is then possible to decellularize nerves with the novel technique reducing both manufacturing times and costs. The relatively inexpensive method of decellularization will facilitate the number of patients that will benefit from reconstruction of nerve defects with ANAs.


A. Crosio G. Ronchi B.E. Fornasari S. Geuna G. Gambarotta P. Tos

After big loos of substances of peripheral nerves, in order to connect proximal with distal stump, it is possible to use, in alternative to autologous grafting, different kind of conduits. The chitosan conduit and the muscle in vein technique showed very good results in pre clinical and clinical settings. We compared in this study the efficacy of empty chitosan conduit versus chitosan conduit enriched with fresh muscle fibbers (MIT) to improve peripheral nerve regeneration.

The median nerve of rat was repaired by means of empty chitosan conduit or MIT (nerve gam 6mm, conduit length 10 mm). As control group we used auto grafting technique. We performed analysis at short term (7,14,28 days) and at long term (12 weeks) in order to register bimolecular modification (quantitative real time PCRand western blot), morphological modification (optic and electronic microscope) and functional changing (grasping test).

Bimolecular analysis showed that muscle fibbers produced and released Neuregulin1, needed for regeneration and activity of Schwann cells. Otherwise also the autograft product Neuregulin1, instead no production was observed in empty conduit. So muscle fibbers compensate this fact. Morphological analysis showed that the first myelinc fibbers appear in MIT after 14 days, but not in empty tube.

The results of our work are very interesting because can merge the easiness of the implantation of chitosan tube and the efficacy of fresh muscle fibbers, as previously demonstrated by muscle in vein technique.

From a clinical point of view this procedure could be an alternative to auto grafting that is nowadays the gold standard for nerve repair, but present soma disadvantages.


A. Crosio P. Tos I. Pellegatta M. Cherubino S Geuna

Scar tissue formation between nerve and surrounding muscle is one of the most undesired occurrence in nerve surgery In order to prevent scar tissue apposition after surgery, a lot of biocompatible products have been developed and tested first of all on animal models and then in surgical practice. we tested the efficacy of a CMC-PEO gel in reduction of perineural scar tissue formation in a mice model and in a small group of patients

We performed surgical procedures on 26 male mices The animals were randomized into three groups. In each group the muscular bed of sciatic nerve was burned with diathermocoagulator. In treated group we applied the tested gel in order to reduce the post surgical scar. After 3 weeks the strenght of the scar was studied using a specific tool. Also histologic analysis was performed. We also reported the results of CMC-PEO gel on 8 patients who underwent surgical decompression of peripheral nerves affected by recurrent compressive syndrome

The biomechanical analysis showed that gel application strongly reduces scar tissue. The difference between not treated and treated group was statistically significative. The histological analysis confirmed this data showing a cleavage plan between scar tissue and sciatic nerve. In patients we monitored VAS pre and post operative and we described reduction from 8 to 1 in 6 patients and from 6 to 1 in two patients.

In conclusion, our study proves the efficacy in animal models of Dynavisc in scar tissue formation prevention and discloses the absolute security and biocompatibility of this products. Moreover also the small sample of patients showed the safety of this product on human, and proved its efficacy on recurrent nerve compression syndrome associated with neurolysis.


M. Gasik I. Hiropoulos A. Zühlke V. Muhonen A.-M. Haaparanta K. Laine I. Kiviranta M. Kellomäki

For a meaningful evaluation of biomaterials, in vitroenvironments that mimic the physiological properties of the in vivoenvironment are desirable with relevant control of key factors. For faster screening and reduction of time and costs, combination and control of different critical parameters are needed.

Commercial Hyalograft® and ChondroGide® scaffolds were compared to a new experimental recombinant human collagen-PLA (rhCo-PLA) [1] and pure PLA scaffolds under BEST protocol [2] in pseudostatic (creep), dynamic (frequency scans, strain sweeps), and combined conditions (simulated operative periods) relevant for orthopaedic applications. Temperatures 25–37°C, dry and fully immersed wet (water, 0.9% NaCl) conditions were analysed and aggregate, complex dynamic moduli and loss factor were obtained. Additionally a method was developed for estimation of the swelling pressure under variable compression. ChondroGide and rhCo-PLA were compared in vivoin earlier experiments [1].

All scaffold materials have a non-linear and non-uniform behaviour when immersed in a fluid, accompanied by rapid change in starting porosity (down for Hyalograft® and ChondroGide®, up for PLA), but nearly stable for rhCo-PLA. Too hydrophilic materials exhibited partial non-wetting (dry spots) under a slight compression eventually by closure of the specimen rim due to elastocapillary effect, where as hydrophobic (PLA) shown substantial expansion. The swelling pressure of PLA was measured of ∼1 kPa (water, 25°C). Observed creeping cannot be reliably fit with simple viscoelastic models, but can be approximated with biphasic theory with variable complex moduli and permittivity values. No significant differences were observed in creep for 1 h and 5 h runs, showing that a shorter time is sufficient to catch the main effects in these biomaterials. No substantial differences were observed between water and NaCl solution at 37°C, except for ChondroGide® which swells in NaCl more than in water. Besides of some differences in swelling, no significant differences observed between 25 and 37°C tests for creep. For dynamic conditions all materials undergo densification and “stiffening” (50% and more) upon cyclic strain deformation, with the effect being higher at 37°C than at 25°C. rhCo-PLA scaffolds exhibit relatively stable modulus in water and loss factor with physiologically-compatible behaviour (∼0.1 with a minimum values range around 1 Hz) at frequency scans (0.01–20 Hz). On the contrary, ChondroGide® has the highest loss factor (up to 0.6–0.7).

Water at 25°C seems to be sufficient to rapidly test these kinds of materials for biomechanical screening, unless additions or specific effects are of interest. The applied deformation level is more important to predict materials properties in dynamic conditions than experiment time. This means that better in vitrodata can be obtained in shorter runs. The animal studies have also exhibit rhCo-PLA producing better quality (ICRS median score 12.5 vs. 8.5 for ChondroGide®).


Y. Renz M.E. Seebach E. Hesse B. Lotz T. Blunk O. Berberich W. Richter

Long-term regeneration of cartilage defects treated with tissue engineering constructs often fails because of insufficient integration with the host tissue. We hypothesize that construct integration will be improved when implants actively interact with and integrate into the subchondral bone. Growth and Differentiation Factor 5 (GDF-5) is known to support maturation of chondrocytes and to enhance chondrogenic differentiation and hypertrophy of mesenchymal stromal cells (MSC). Therefore, we investigated whether GDF-5 is capable to stimulate endochondral ossification of MSC in vitro and in vivo and would, thus, be a promising candidate for augmenting fibrin glue in order to support integration of tissue engineering constructs into the subchondral bone plate.

To evaluate the adhesive strength of fibrin glue versus BioGlue®, a commercially available glue used in vascular surgery, an ex vivo cadaver study was performed and adhesion strength was measured via pull-out testing. MSC were suspended in fibrin glue and cultivated in chondrogenic medium with and without 150 ng/mL GDF-5. After 4 weeks, the formed cartilage was evaluated and half of the constructs were implanted subcutaneously into immunodeficient mice. Endochondral ossification was evaluated after 2 and 4 weeks histologically and by microCT analysis. BioGlue®and GDF-5-augmented fibrin glue were tested for 4 weeks in a minipig cartilage defect model to assess their orthotopic biocompatibility.

Pull-out testing revealed sufficient adhesive strength of fibrin glue to fix polymeric CellCoTec constructs in 6 mm cartilage defects, however, BioGlue®showed significantly higher adhesive power. In vitro chondrogenesis of MSC under GDF-5 treatment resulted in equal GAG deposition and COLIIa1 and ACAN gene expression compared to controls. Importantly, significantly increased ALP-activity under treatment with GDF-5 on day 28 indicated enhanced hypertrophic differentiation compared to controls. In vivo, MSC-fibrin constructs pre-cultured with GDF-5 developed a significantly higher bone volume on day 14 and 28 compared to controls. When pre-cultured with GDF-5 constructs showed furthermore a significantly higher bone compactness (bone surface/bone volume coefficient) than controls, and thus revealed a higher maturity of the formed bone at 2 weeks and 4 weeks. Orthotopic biocompatibility testing in minipigs showed good defect filling and no adverse reactions of the subchondral bone plate for defects treated with GDF-5-augmented fibrin glue. Defects treated with BioGlue®, however, showed considerable subchondral bone lysis.

Thus, BioGlue®– despite its adhesive strength – should not be used for construct fixation in cartilage defects. GDF-5-augmented fibrin glue is considered promising, because of a combination of the adhesive strength of fibrin with an enhanced osteochondral activity of GDF-5 on MSC. Next step is to perform a large animal study to unravel whether GDF-5 stimulated endochondral ossification can improve scaffold integration in an orthotopic cartilage defect model.


C. Bottegoni S. Manzotti W. Lattanzi L. Senesi A. Gigante

Nerve growth factor (NGF) is involved in several joint diseases. It participates in pain initiation, inadequate nociception and neurogenic inflammation; its concentrations are increased in synovial fluid and tissue from human and experimental arthritis. However, data about its role in normal and pathological articular cartilage are scant and conflicting. This study assesses the effects of different

NGF concentrations on cultured healthy human chondrocytes by evaluating cell proliferation, cell phenotype, and gene expression.

The 3-[4,5-dimethylthiazol-2-y1]-2,5-diphenyl-2H-tetrazolium bromide (MTT) test excluded an influence on cell viability; alcian blue and S100 staining demonstrated that NGF induced de-differentiation of the chondrocyte phenotype; real-time PCR disclosed that it reduced the expression of collagen type II (COL2A1) and transforming growth factor-β (TGF-β), key factors involved in articular cartilage integrity, and stimulated upregulation of metalloproteinase (MMP)-3 and MMP-13.

These findings suggest that NGF may adversely affect differentiated chondrocytes from articular cartilage by inhibiting the expression of the collagens found in normal articular cartilage (COL2A1), while exerting a degradative effect though TGF-β downregulation and MMP-13 and MMP-3 upregulation. Further investigation is required to determine whether the gene expression pattern found in our study is associated with changes in protein expression.


E. Hesse U. Freudenberg T. Niemietz C. Greth M. Weisser Y. Renz S. Hagmann M. Binner C. Werner W. Richter

Cell-based tissue engineering is a promising approach for treating cartilage lesions but the optimal cell-scaffold combination for hyaline cartilage regeneration has yet to be identified. Novel hydrogels allow including tailored tissue type specific modifications with physiologically relevant peptides, by this selectively influencing the cell response. Aim of this study was to modify a poly(ethylene glycol) (PEG)/heparin hydrogel by functionalization with cell instructive peptides introducing matrix-metalloprotease (MMP)-degradability, the cell adhesion motif RGD, or collagen binding motifs (CKLER, CWYRGRL) to improve cartilage matrix deposition in tissue engineering constructs.

The hydrogels were formed by mixing thiol-endfunctionalized (MMP-insensitive) starPEG or starPEG-MMP-conjugates carrying MMP-sensitive peptides at every arm and maleimide-functionalized heparin [1] in the presence or absence of cell instructive peptides. Human mesenchymal stromal cells (MSC) or porcine chondrocytes were grown in the hydrogels for up to 4 weeks in vitro under chondrogenic conditions, and in vivo in subcutaneous pockets of immunodeficient mice.

MMP-sensitive and –insensitive starPEG/heparin hydrogels supported chondrogenic differentiation of MSC according to induction of COL2A1, BGN and ACAN mRNA expression. Enhanced MMP-sensitivity and therefore degradability increased cell viability and proliferation. RGD-modification of the hydrogels induced cell-spreading and an intensively interconnected cell network. Other than hypothesized, CKLER and CWYRGRL were unable to raise collagen deposition in constructs in vitro. Matrix deposition in chondrocyte-containing peptide-functionalized hydrogels was high and the instructive effect of the hydrogels on chondrocytes appeared stronger in vivo where the merely pericellular cartilaginous matrix deposition was overcome in RGD-functionalized starPEG/heparin hydrogels.

Peptide-functionalized starPEG/heparin hydrogel altered cell morphology, proliferation and differentiation with MSC being similar sensitive to cell-matrix interaction peptides like articular chondrocytes. We also demonstrated that in vivoperformance of cell instructive hydrogels can exceed results gained by in vitromodels. Altogether, the manipulation of hydrogel constructs with signaling cues is considered promising for functional cartilage tissue engineering.


J. Fischer M. Ortel S. Hagmann A. Hoeflich W. Richter

While mesenchymal stromal cells (MSCs) are a very attractive cell source for cartilage regeneration, an inherent tendency to undergo hypertrophic maturation and endochondral ossification; as well as insufficient extracellular matrix production still prevent their clinical application in cell –based cartilage repair therapies. We recently demonstrated that intermittent treatment of MSC with parathyroid hormone-related protein (PTHrP) during in vitro chondrogenesis significantly enhanced extracellular matrix deposition and concomitantly reduced hypertrophy (1) opposite to constant PTHrP treatment, which strongly suppressed chondrogenesis via the cAMP/PKA pathway (2). Since signal timing seemed to be decisive for an anabolic versus catabolic outcome of the PTHrP treatment, we here aimed to investigate the role of PTHrP pulse frequency, pulse duration and total weekly exposure time in order to unlock the full potential of PTHrP pulse application to enhance and control MSC chondrogenesis.

Human bone marrow-derived MSC were subjected to in vitro chondrogenesis for six weeks. From day 7–42, cells were additionally exposed to 2.5 nM PTHrP(1–34) pulses or left untreated (control). Pulse frequency was increased from three times per week (3×6h/week) to daily, thereby maintaining either pulse duration (6h/d, total 42 h/week) or total weekly exposure time (2.6h/d, total 18 h/week).

A high frequency of PTHrP-treatment (daily) was important to significantly increase extracellular matrix deposition and strongly suppress ALP activity by 87 %; independent of the pulse duration. A long pulse duration was, however, critical for the suppression of the hypertrophic marker gene IHH, while MEF2C and IBSP were significantly suppressed by all tested pulse duration and frequency protocols. COL10A1, RUNX2 and MMP13 mRNA levels remained unaffected by intermittent PTHrP. A drop of Sox9 levels and a decreased proliferation rate after 6 hours of PTHrP exposure on day 14 indicated delayed chondroblast formation. Decreased IGFBP-2, -3 and -6 expression as well as decreased IGFBP-2 protein levels in culture supernatants suggested IGF-I-related mechanisms behind anabolic matrix stimulation by intermittent PTHrP.

The significant improvement of MSC chondrogenesis by the optimization of intermittent PTHrP application timing revealed the vast potential of PTHrP to suppress hypertrophy and stimulate chondrogenic matrix deposition. A treatment with PTHrP for 6 hours daily emerged as the most effective treatment mode. IGF-I and Sox-9 related mechanisms are suggested behind anabolic effects and delayed chondroblasts formation, respectively. Thus, similar to the established osteoporosis treatment, daily injections of PTHrP may become clinically relevant to support cartilage repair strategies relying on MSCs like subchondral bone microfracturing and autologous MSC implantation.


C. Wek J. Kelly A. Sott

More than half of patients with neck of femur (NOF) fractures report their pain as severe to very severe in the first 24hrs. Opioids remain the most commonly used analgesia and are effective for static pain but not dynamic pain. Opioids provide suboptimal analgesia when patients are in a dynamic transition state and their side-effects are a source of morbidity in these patients. The Fascia Iliaca Compartment Block (FICB) involves infiltration of the fascia iliaca compartment with a large volume of low concentrated local anaesthetic to reduce pain by affecting the femoral and lateral cutaneous nerve of the thigh. The London Quality Standards for Fractured neck of femur services (2013) stated that the FICB should be routinely offered to patients. We performed an audit of patient outcomes following the introduction of the FICB across three centres.

We performed a two-cycle audit across two hospitals in 2014/15. The first cycle audited compliance with the NICE guidance in the management and documentation of pain and AMTS (Abbreviated Mental Test Scores) in patients. The second cycle was conducted following the integration of the FICB into the multidisciplinary NOF fracture protocol across three hospital sites. Data was collected on numeric pain scores, pre and post-op AMTS and opioid requirements.

There were 40 patients audited with 20 in the first cycle prior to the introduction of the FICB and 20 following this. In the second cycle, there was a statistically significant improvement (p<0.001) in the difference between the pre and post-op AMTS.

The preliminary findings in this audit support the use of the FICB adjunct to analgesia in the pre-operative management of NOF fracture patients. The FICB is a safe procedure and the organisational learning of this procedure through a multidisciplinary approach can significantly improve the outcomes of NOF fracture patients.


T. Edwards B. Patel H. Brandford-White D. Banfield A. Thayaparan D. Woods

Clavicular hook plates have been used over the last decade in the treatment of lateral clavicular fractures with good rates of union reported throughout the literature. Fewer studies have reported the functional outcome of these patients and some have reported potential soft tissue damage post plate removal. We aimed to review the functional outcomes alongside union rates in patients treated with hook plates for lateral clavicular fractures.

In this retrospective case series, 21 patients with traumatic lateral third clavicular fractures were included. 15 had Neer type II fractures, 4 Neer type III fractures, 1 patient had a Neer type I fracture and 1 radiograph was not able to be classified. All patients were treated with clavicular hook plates at the same district general hospital by five experienced surgeons between March 2010 and February 2015 adhering to the same surgical protocol. All patients had standard physiotherapy and post operative follow up. Plates were removed when radiological union was achieved in all but one patient who had the plate removed before union was achieved due to prolonged non-union. Patients were followed up post plate removal and evaluated clinically using the Oxford Shoulder Score. Their post plate radiographs were assessed by an independent radiologist and bony union documented.

21 patients were included. Mean age was 40 (range 14–63) with a male:female ratio of 17:4. Mean follow up was 5 months post injury (1–26 months). The hook plate remained in situ for a mean time of 4.3 months (2–16 months). One patient developed a post-operative wound infection treated with antibiotics, 2 patients developed adhesive capsulitis, one patient had not achieved bony union prior to hook plate removal at 16 months, however did achieve union 2 months post plate removal, two patients required revision plating. All patients achieved bony union eventually with good alignment and no displacement of the acromioclavicular joint seen on the most recent post operative radiographs. Post plate removal Oxford Shoulder Scores indicated good shoulder function with a mean score of 41.5 (maximum score possible 48 and the range of scores for our cohort was 30–47).

Our data would support the use of hook plates in the treatment of lateral clavicular fractures. All patients achieved union eventually with good alignment and this was reflected in the good functional outcome scores. This study is limited in its small cohort and short-term follow up. More research is required to examine the long term consequences of hook plate surgery in a larger patient population.


D. Birrell P.J. Jenkins H. Quinn M. Nugent L.A. Rymaszewski

Weber A fractures are a sub-group of ankle fractures parallel or distal to the joint line, below the level of the syndesmosis. Most stable Weber A fractures are managed conservatively with no significant difference in outcome vs. surgical intervention.1,2In an effort to ensure staff time was being used as efficiently as possible, a consultant-led virtual fracture clinic (VFC) was introduced to manage Weber A fractures. Patients not requiring immediate surgery were reviewed remotely and, wherever possible, were ‘virtually discharged’ to a nurse-led telephone line. Those with diagnostic uncertainty, unusual features or delayed recovery received a face to face review from a nurse or surgeon.

To examine how patients were allocated under this protocol, along with overall patient satisfaction and functional outcome.

An audit of satisfaction and outcome was performed of all patients who presented with a Weber A fracture to the ED between October 2011 and October 2012. The minimum follow-up period was two years. A satisfaction and patient reported outcome (5-level-likert-scale, EQ-5D, MOXFQ) measure was conducted via telephone.3,4After exclusions, 79 patients were left, of which 63 were successfully contacted (80%).

Of the 79 patients included, 33 (42%) required early face-to-face review while 46 (58%) were discharged with advice following discussion at the VFC. Of the 63 successfully contacted, receipt of the information leaflet was recalled by 61 (97%) and 54 (86%) were satisfied with the information they had received. There was no difference in patient satisfaction regarding recovery (p=0.079) or treatment information (p=0.236) provided between avulsion and transverse fractures or in functional outcome according to MOXFQ (p=0.626) or EQ-Vas (p=0.915) scores.

Patient satisfaction can remain high without face-to-face consultations following injury. This was demonstrated by the high satisfaction with recovery (83%) and with information provided (86%) and is consistent with current published literature and similar to what would have been achieved with traditional fracture clinic review.5The new protocol reduces unnecessary hospital attendances for patients and reduces the burden of unnecessary review in orthopaedic departments. Only 15% of patients required review at a traditional fracture clinic and 27% at a nurse-led clinic, freeing resources for more complex cases.


O. Basci M. Erduran A.E. Acan B. Uzun A. Karakasli

Basic engineering principles dictate that unplugged screw holes serve as sites of the concentration of stress and the initiation and growth of cracks (1,2). The idea of filling the holes were tested previously in the literature showing promising results (3). However there's either adverse results which might be a design mistake (4). The purpose of this study was to determine if the use of specially designed screw hole inserts in empty locking screw holes improves the strength and failure characteristics of locking plates.

Forty two 7-hole locking LC/DCP plates were mounted on cylindric UHMW Polyethylene blocks with a 1-cm gap between blocks, simulating a fracture with comminution and bone loss. 21 plates had a screw hole insert placed in the center hole (centered over the simulated fracture), while 21 of the plates remained empty in the center hole. The plate–block constructs were placed in a mechanical testing machine and subjected to a series of loading conditions. The axial, bending and torsional stiffness and displacements needed for failure of each plate-block construct was calculated. The Statistical analysis was performed by Mann Whitney-U test for independent variables.

All plates were then loaded to failure. There were significant difference in the axial load to failure (p=0.017), bending load to failure (p<0.01) and bending diplacements (p<0.01) of the test groups favoring the screw hole insert group as a higher mechanical strength.

In conclusion the study demonstrates that the addition of the specially designed locking screw hole insert does significantly change the stength of the locking LC/DCP plates and might be suggested in the clinical application.


S. Minkwtz C.-E. Ott J. Gruenhagen M. Fassbender B. Wildemann

It is supposed that disturbed vascularization is a major cause for the development of an atrophic non-union. However, an actual study revealed normal vessel formation in human non-union tissues [1]. An animal study using an atrophic non-union model should clarify the influence of the inhibition of angiogenesis by the inhibitor Fumagillin on bone healing and the underlying processes including inflammation, chondrogenesis, angiogenesis and osteogenesis.

For each group and time point (3, 7, 14, 21 and 42 days) 5–6 adult female Sprague Dawley rats were analyzed. The tibia was osteotomized and stabilized intramedullary with a k-wire coated with the drug carrier PDLLA (control group) or PDLLA +10% Fumagillin (atrophy group). Microarrays: Total-RNA were pooled per group, labeled with the Agilent single-color Quick-Amp Labeling Kit Cy3 and hybridized on Agilent SurePrint G3 Rat Gene Expression microarrays. After feature extraction and quantile normalization, relevant biological processes were identified using GeneOntology. Genes with an expression value below the 25. percentile were excluded. Heatmaps were used for visualization.

The analysis of inflammatory genes revealed an upregulation of monocyte/macrophage- relevant factors such as the chemokines Ccl2 and Ccl12 and the surface marker CD14. Other factors involved in the early inflammation process such as Il1a, Tnf and Il6 were not affected. Chondrogenic markers including Collagen Type II, -IX, -X, Mmp9, Mmp13, Hapln1, Ucma, Runx2, Sox5 and -9 were downregulated in this group. Furthermore, osteogenic factors were less regulated within the middle stage of healing (day 14–21). This gene panel included Bmps, Bmp antagonists, Bmp- and Tgfb receptors, integrines and matrix proteins. qPCR analysis of angiogenic genes showed an upregulation of Angpt2, Fgf1 and -2, but not for Vegfa over the later healing time points.

We demonstrated in a previous study that inhibiting angiogenesis in an osteotomy model led to a reduction in vessel formation and to the development of an atrophic non-union phenotype [2]. The microarray analysis indicated no prolonged inflammatory reaction in the atrophy group. But the upregulation of chemokines together with a delay in hematoma degradation signs to a mismatch between recruitment and demand of macrophages from the vessel system. Furthermore, chondrogenesis was completely blocked, which was shown by a downregulation of chondrogenic but also osteogenic markers being involved in chondrogenic processes. A reduced recruitment of MSCs might be a possible explanation. Although, microarray data revealed only minor expression changes regarding angiogenic genes, validation by q-PCR showed an upregulation of Angpt2, Fgf1 and -2 over the later healing time points. Due to the heterogeneity of the callus tissue it might be that variations of gene expression of a single tissue type will be masked by the expression levels of other tissue types. This issue is even more pronounced when analyzing different time points and by pooling the samples.


S. Zaffagnini C. Signorelli F. Raggi A. Grassi T. Roberti Di Sarsina T. Bonanzinga N. Lopomo M. Marcacci

The Pivot-shift phenomenon (PS) is known to be one of the essential signs of functional insufficiency of the anterior cruciate ligament (ACL). To evaluate the dynamic knee laxity is very important to accurately diagnose ACL injury, to assess surgical reconstructive techniques, and to evaluate treatment approaches. However, the pivot-shift test remains a subjective clinical examination difficult to quantify. The aim of the present study is to validate the use of an innovative non-invasive device based on the use of an inertial sensor to quantify PS test. The validation was based on comparison with data acquired by a surgical navigation system.

The surgeon intraoperatively performed the PS tests on 15 patients just before fixing the graft required for the ACL reconstruction. A single accelerometer and a navigation system simultaneously acquired the joint kinematics. An additional optical tracker set to the accelerometer has allowed to quantify the movement of the sensor. The tibial anteroposterior acceleration obtained with the navigation system was compared with the acceleration acquired by the accelerometer. It is therefore estimated the presence of any artifacts due to the soft tissue as the test-retest repositioning error in the positioning of the sensor. It was also examined, the repeatability of the acceleration parameters necessary for the diagnosis of a possible ACL lesion and the waveform of the output signal obtained during the test. Finally it has been evaluated the correlation between the two acceleration measurements obtained by the two sensors.

The RMS (root mean square) of the error of test-retest positioning has reported a good value of 5.5 ± 2.9 mm. While the amounts related to the presence of soft tissue artifacts was equal to 4.9 ± 2.6 mm. It was also given a good intra-tester repeatability (Cronbach's alpha = 0.86). The inter-patient similarity analysis showed a high correlation in the acceleration waveform of 0.88 ± 0.14. Finally the measurements obtained between the two systems showed a good correlation (rs = 0.72, p<0.05).

This study showed good reliability of the proposed scheme and a good correlation with the results of the navigation system. The proposed device is therefore to be considered a valid method for evaluating dynamic joint laxity.


M. Conconi N. Sancisi V. Parenti-Castelli

The evaluation of knee stability is fundamental for the clinical discrimination between healthy and pathological joints, for the design and evaluation of prostheses and for the definition of articular models.

Knee stability can be quantified by measuring the relation between applied single-axis constant loads and corresponding tibio-femoral displacements (i.e., translations and rotations), namely the joint stiffness, at a given flexion angle.

No many studies are available in the literature on this topic [1–3]. In particular, the translations/rotations along/about directions different from the loaded one were not deeply investigated.

A fresh frozen lower-limb specimen (female, 63 years old, weight 68 Kg, height 158 cm) was considered. The forefoot and all soft tissues outside the knee were removed by a surgeon, keeping the knee joint capsule intact. A stereophotogrammetric system (Vicon Motion Systems Ltd.) was used to measure the femoro-tibial relative motion by two trackers fixed to the bones, thus introducing no soft-tissue artifact. The specimen was then mounted on a test rig capable to exert general loading conditions [4], and constant loads were applied to the tibia: ±100 N in antero-posterior (AP) and medio-lateral (ML) direction; ±10 Nm about abb-adduction (AA) and in-external (IE) rotations. Loads were applied approximately at the mid-point between the lateral and medial epicondyles, and were kept constant while the femur was flexed over a 135° range. Displacements were defined with respect to the joint natural motion (RTNM), also registered with the same rig. The relative motion of the bones was expressed by a standard joint coordinate system [5].

Considerable translations/rotations appeared also on different directions than the loaded one. At 90° of flexion, an anterior load of +100 N produced 5.5 mm of anterior translation, 10.9 mm of medial translation and 12° of external rotation of the tibia (RTNM).

When not directly loaded in ML and IE directions, the tibia translated medially and rotated externally, independently from the sign of the applied load: at 90° of flexion, an AA torque of +10 Nm and −10 Nm produced respectively 5 mm and 8.9 mm of medial translation, and 5.5° and 7.5° of external rotation of the tibia (RTNM).

The load/displacement relation was highly non linear also for the loading direction. At 90° of flexion, IE torques of +10 Nm and −10 Nm produced respectively 3.6° of internal and 14.2° of external rotation of the tibia (RTNM).

The knee joint structures make the relation between applied loads and bone displacements highly non linear. As a result, a load acting on one direction produces a complex three-dimensional joint motion.

Future work will extend the presented analysis on several specimens, also increasing the magnitude and the number of loading conditions.


J. Shi M. Browne D. Barrett M. Heller

Inter-subject variability is inherently present in patient anatomy and is apparent in differences in shape, size and relative alignment of the bony structures. Understanding the variability in patient anatomy is useful for distinguishing between pathologies and to assist in surgical planning. With the aim of supporting the development of stratified orthopaedic interventions, this work introduces an Articulated Statistical Shape Model (ASSM) of the lower limb. The model captures inter-subject variability and allows reconstructing ‘virtual’ knee joints of the lower limb shape while considering pose.

A training dataset consisting of 173 lower limbs from CT scans of 110 subjects (77 male, 33 female) was used to construct the ASSM of the lower limb. Each bone of the lower limb was segmented using ScanIP (Simpleware Ltd., UK), reconstructed into 3D surface meshes, and a SSM of each bone was created. A series of sizing and positioning procedures were carried out to ensure all the lower limbs were in full extension, had the same femoral length and that the femora were aligned with a coincident centre. All articulated lower limbs were represented as: (femur scale factor) × (full extension articulated lower limb + relative transformation of tibia, fibula and patella to femur). Articulated lower limbs were in full extension were used to construct a statistical shape model, representing the variance of lower limb morphology. Relative transformations of the tibia, fibula and patella versus the femur were used to form a statistical pose model. Principal component analysis (PCA) was used to extract the modes of changes in the model.

The first 30 modes of the shape model covered 90% of the variance in shape and the first 10 modes of the pose model covered 90% of the pose variance. The first mode captures changes of the femoral CCD angle and the varus/valgus alignment of the knee. The second mode represents the changes in the ratio of femur to tibia length. The third mode reflects change of femoral shaft diameter and patella size. The first mode characterising pose captures the medial/lateral translation between femur and tibia. The second mode represents variation in knee flexion. The third mode reflects variation in tibio-femoral joint space.

An articulated statistical modelling approach was developed to characterize inter-subject variability in lower limb morphology for a set of training specimens. This model can generate large sets of lower limbs to systematically study the effect of anatomical variability on joint replacement performance. Moreover, if a series of images of the lower limb during a dynamic activity are used as training data, this method can be applied to analyse variance of lower limb motion across a population.


J. Favre S. Bennour B. Ulrich T. Legrand B. Jolles

Knee osteoarthritis (OA) is a serious health concern, requiring novel therapeutic options. Walking mechanics has long been identified as an important factor in the OA process. Specially, a larger peak knee adduction moment during the first half of stance (KAM) has been associated with the progression of medial knee OA. Consequently, various gait interventions have been designed to reduce the KAM, including walking with a decreased foot progression angle (FPA). Other gait variables have recently been associated with medial knee OA progression, particularly a larger peak knee flexion moment during stance (KFM) and a larger knee flexion angle at heel-strike (KFA). Currently, there is a paucity of data regarding the effect of reducing the FPA on the KFM and KFA.

This study aimed to test for correlations between the FPA and the KAM, KFM and KFA. It was hypothesized that reducing the FPA is beneficial with respect to these three OA-related gait variables.

Seven healthy subjects participated in this study after providing informed consent (4 male; 24 ± 5 years old; 21.9 ± 1.5 kg/m^2). Their walking mechanics was determined using a validated procedure based on a camera-based system (Vicon) and floor-mounted forceplates (Kistler). Participants were first asked to walk without instructions and these initial trials were used to determine their normal footstep characteristics. Then, footsteps with the same characteristics as during the normal trials, except for the FPA, were displayed on the floor and participants were requested to walk following these footsteps. Nine trials with visual instructions were collected for each participant, corresponding to FPA modifications in the range ± 20° compared to the normal FPA, with 5° increment. For each participant, the associations between FPA and knee biomechanics (KAM, KFM and KFA) were assessed using Pearson correlations based on the data from the 9 trials with FPA variations. Significant level was set a priori to 5%.

Significant correlations were noted between FPA and KAM for 5 out of the 7 participants, with R comprised between 0.75 and 0.96. Four participants also reported significant correlations between FPA and KFA (−0.88<R<−0.69). Significant correlations between FPA and KFM were observed in 2 participants, with inconsistent R (−0.68 and 0.78). There was no significant correlation between FPA and walking speed for none of the participants.

While the results confirmed that decreasing the FPA (toeing in) is often associated with a KAM reduction, they also showed relationships between decreased FPA and increased KFA. Therefore, this study suggests that reducing the FPA should be done in consideration of the possible negative changes in KFA. Similarly, although only one participant increased the KFM when decreasing the FPA, it seems important monitoring the effects FPA modifications could have on the KFM. The large variations observed among participants further suggest individualized gait modifications. This study should be extended to medial knee OA patients and longitudinal research is necessary to better understand the effects of decreasing the FPA.


G. Salvadore P. Meere L. Chu X.S. Zhou P.S. Walker

There are many factors which contribute to function after TKA. In this study we focus on the effect of varus-valgus (VV) balancing measured externally. A loose knee can show instability (Sharkey 2014) while too tight, flexion can be limited. Equal lateral-medial balancing at surgery leads to a better result (Unitt 2008; Gustke 2014), which is generally the surgical goal. Indeed similar varus and valgus laxity angles have been found in most studies in vitro (Markolf 2015; Boguszewski 2015) and in vivo (Schultz 2007; Clarke 2016; Heesterbeek 2008). The angular ranges have been 3–5 degrees at 10–15 Nm of knee moment, females having the higher angles. The goal of this study was to measure the varus and valgus laxity, as well as the functional outcome scores, of two cohorts; well-functioning total knees after at least one year follow-up, and subjects with healthy knees in a similar age group to the TKR's. Our hypothesis was that the results will be equal in the two groups.

50 normal subjects average age 66 (27 male, 23 female) and 50 TKA at 1 year follow-up minimum average age 68 years (16 male, 34 female) were recruited in this IRB study. The TKA's were performed by one surgeon (PAM) of one TKA design, balancing by gap equalization. Subjects completed a KSS evaluation form to determine functional, objective, and satisfaction scores. Varus and valgus measurements were made using the Smart Knee Fixture (Borukhov 2016) at 20 deg flexion with a moment of 10 Nm.

The statistical results demonstrated that there was no significant difference in either varus or valgus laxity between the two groups (p= 0.9, 0.3 respectively). Pearson's correlation coefficient between varus and valgus laxity of the healthy group was 0.42, while for the TKA group was 0.55. In both cohorts varus laxity was significant higher than valgus laxity (p= 0.001e−5 for healthy subjects and p=0.0001 for TKA). The healthy group had higher functional and objective KSS scores (p= 0.005e−4, and p=0.004e−5 respectively), but the same satisfaction scores as the TKA (p=0.3). No correlation was found between the total laxity of the TKA group and the KSS scores (functional, objective and satisfaction). Total laxity in females was significantly higher than in males in the healthy group, but no differences was found in the TKA group.

The hypothesis of equal varus and valgus angles in the 2 groups was supported. The larger varus angle implied a less stiff lateral collateral compared with the medial collateral. If the TKA's were balanced equally at surgery, it is possible there was ligament remodeling over time. However the functional scores were inferior for the TKA compared with normal. This finding has not been highlighted in the literature so far. The causes could include weak musculature (Yoshida 2013), non-physiologic kinematics due to the TKA design, or the use of rigid materials in the TKA. The result presents a challenge to improve outcomes after TKA.


S. Tas S. Yilmaz M.R. Onur F. Korkusuz

Obesity decreases patellar tendon stiffness in females but not males Introduction Patellar tendon (PT) injuries are frequent due to excessive mechanical loading during strenuous physical activity. PT injury incidence is higher in females and obese individuals. The reason behind higher tendon injury incidence in females and obese individuals might be structural changes in tendons such as stiffness or elasticity. Tendon stiffness can recently be quantified using shear wave elastography (SWE). We aimed to examine the stiffness of PT in healthy sedentary participants using this new technology.

This prospective study was carried out with 58 (34 female, 24 male) healthy sedentary participants between the ages of 18–44 years (27.5±7.7 years). Body mass and body fat percentage were measured with the Bioelectrical Impedance method using Tanita BC-418 MA Segmental Body Composition Analyser (Tanita Corporation, Tokyo, Japan). Participants were subsequently categorized into ‘normal-weight’ (BMI < 23 kg/m2) and ‘obese’ (BMI>27.5 kg/m2). SWE of the PT was measured with the ACUSON S3000 (Siemens Medical Solution, Mountain Wiew, CA, USA) ultrasound device using the Siemens 9L4 (4–9 MHz) linear-array probe with the Virtual Touch Imaging Quantification® method. The measurement was performed by placing the US probe longitudinally on patellar tendon with knee flexed at 30°. The region between about 1 cm distal of patellar bone-tendon junction and 1 cm proximal of bone-tendon junction of tibia was used for PT stiffness measurement (Figure 1). Average of three successive measurements at 10 sec intervals was recorded as PT stiffness. PT stiffness was quantified with MATLAB Version 2015 (Mathworks, Massachusetts, USA) by converting colour data into numbers.

PT stiffness, in males, in females, in normal males, in obese males, in normal females, and in obese females was 8.6±1.0 m/sec, 7.4±1.1 m/sec, 8.6±1.1 m/sec, 8.5±1.0 m/sec, 7.9±0.9 m/sec, and 6.2±0.9 m/sec, respectively. Average body fat percentage in males, in females, in normal males, in obese males, in normal females, and in obese females was 20.1±7.4 kg/m2, 30.1±8.1 kg/m2, 15.4±5.2 kg/m2, 24.7±4.6 kg/m2, 25.6±5.5 kg/m2, and 38.1±5.0 kg/m2, respectively. Males PT stiffness was higher when compared to that of females (p=0.000). PT stiffness was similar in obese and normal males (p=0.962) but obese females had lower PT stiffness compared to normal females (p=0.001).

PT stiffness of females was lower than males and obesity decreased PT stiffness in females but not in males. The possible explanation of lower PT stiffness in females might be due to their higher estrogen levels that lead to a decrease in estradiol level and collagen synthesis. Lower tendon stiffness in obese females might be metabolic effects due to the increased adipose tissue that contains proteins such as adipokinome, chemerin, lipocalin 2, serum amyloid A3 and adiponectin. These proteins lead to disturbance of tendon homeostasis and decreased collagen content. Altered tendon homeostasis and decreased collagen content may lead to a decrease in tendon stiffness. Decreased PT stiffness in especially in obese women might be associated with increased risk of PT injury.


C. Rivière H. Shah E. Auvinet F. Iranpour S. Harris J. Cobb S. Howell A. Aframian

Trochlear geometry of modern femoral implants is designed for mechanical alignment (MA) technique for TKA. The biomechanical goal is to create a proximalised and more valgus trochlea to better capture the patella and optimize tracking. In contrast, Kinematic alignment (KA) technique for TKA respects the integrity of the soft tissue envelope and therefore aims to restore native articular surfaces, either femoro-tibial or femoro-patellar. Consequently, it is possible that current implant designs are not suitable for restoring patient specific trochlea anatomy when they are implanted using the kinematic technique, this could cause patellar complications, either anterior knee pain, instability or accelerated wear or loosening. The aim of our study is therefore to explore the extent to which native trochlear geometry is restored when the Persona®implant (Zimmer, Warsaw, USA) is kinematically aligned.

A retrospective study of a cohort of 15 patients with KA-TKA was performed with the Persona®prosthesis (Zimmer, Warsaw, USA). Preoperative knee MRIs and postoperative knee CTs were segmented to create 3D femoral models. MRI and CT segmentation used Materialise Mimics and Acrobot Modeller software, respectively. Persona®implants were laser scanned to generate 3D implant models. Those implant models have been overlaid on the 3D femoral implant model (generated via segmentation of postoperative CTs) to replicate, in silico, the alignment of the implant on the post-operative bone and to reproduce in the computer models the features of the implant lost due to CT metal artefacts. 3D models generated from post-operative CT and pre-operative MRI were registered to the same coordinate geometry. A custom written planner was used to align the implant, as located on the CT, onto the pre-operative MRI based model. In house software enabled a comparison of trochlea parameters between the native trochlea and the performed prosthetic trochlea. Parameters assessed included 3D trochlear axis and anteroposterior offset from medial facet, central groove, and lateral facet. Sulcus angle at 30% and 40% flexion was also measured. Inter and intra observer measurement variabilities have been assessed.

Varus-valgus rotation between the native and prosthetic trochleae was significantly different (p<0.001), with the prosthetic trochlear groove being on average 7.9 degrees more valgus. Medial and lateral facets and trochlear groove were significantly understuffed (3 to 6mm) postoperatively in the proximal two thirds of the trochlear, with greatest understuffing for the lateral facet (p<0.05). The mean medio-lateral translation and internal-external rotation of the groove and the sulcus angle showed no statistical differences, pre and postoperatively.

Kinematic alignment of Persona®implants poorly restores native trochlear geometry. Its clinical impact remains to be defined.


G. Salvadore M. Verstraete P. Meere J. Victor P.S. Walker

During TKA surgery, the usual goal is to achieve equal balancing between the lateral and medial side, which can be achieved by ligament releases or “pie crusting”. However little is known regarding a relationship between the balancing forces on the medial and lateral plateaus during TKA surgery, and the varus and valgus and rotational laxities when the TKA components are inserted. It seems preferable that the laxity after TKA is the same as for the normal intact knee. Hence the first aim of this study was to compare the laxity envelope of a native knee, with the same knee after TKA surgery. The second aim was to examine the relationship between the Varus-Valgus (VV) laxity and the contact forces on the tibial plateau.

A special rig that reproduced surgical conditions and fit onto an operating table was designed (Verstraete et al. 2015). The rig allows application of a constant varus/valgus moment, and an internal-external (IE) torque. A series of heel push tests under these loading conditions were performed on 12 non-arthritic half semibodies hip-to-toe cadaveric specimens. Five were used for method development. To measure laxities, the flexion angle, the VV and the IE angle were measured using a navigation system. After testing the native knee, a TKA was performed using the Journey II BCS implant, the navigation assuring correct alignments. Soft tissue balancing was achieved by measuring compressive forces on the lateral and medial condyles with an instrumented tibial trial (Orthosensor, Dania Beach, Florida). At completion of the procedure, the laxity tests were repeated for VV and IE rotation and the contact forces on the tibial plateau were recorded, for the full range of flexion.

The average of the varus-valgus and the IE laxity envelope is plotted for the native (yellow), the TKA (pink) and the overlap between the two (orange). The average for six specimens of the contact force ratio (medial/medial+lateral force) during the varus and valgus test is plotted as a function of the laxity for each flexion angle.

The Journey II implant replicated the VV laxity of the native knee except for up to 3 degrees more valgus in high flexion. For the IE, the TKA was equal in internal rotation, but up to 5 degrees more constrained in varus in mid range. Plotting contact force ratio against VV laxity, as expected during the varus test the forces were clustered in a 0.85–0.95 ratio, implying predominant medial force with likely lateral lift-off. For the valgus test, the force ratio is more spread out, with all the values below 0.6. This could be due to the different stiffness of the MCL and LCL ligaments which are stressed during the VV test. During both tests the laxity increases progressively with flexion angle. Evidently the geometry knee reproduces more lateral laxity at higher flexion as in the anatomic situation.


T. Fujito T. Tomita K. Futai T. Yamazaki K. Kenichi H. Yoshikawa K. Sugamoto

We hypothesized that using the navigation system, intra-operative knee kinematics after implantation measured may predict that post-operative kinematic in activities of daily living. Our aim was to compare intra-operative knee kinematics by a computed tomography (CT)-based navigation system and post-operative by the 2- to 3-dimensional registration techniques (2D3D).

This study were performed for 8 patients (10 knees, medial osteoarthritis) who underwent primary PS TKA using CT-based navigation system. The median follow-up period from operation date to fluoroscopic surveillance date was 13 months (range 5 – 37 months). Navigation and 2D3D had a common coordinate origin for components. Medial and lateral femoral condyle anterior-posterior translation (MFT and LFT) were respectively defined as the distance of the projection of the points (which was set on the top of the posterior femoral pegs) onto the axial plane of the tibial coordinate system. Intraoperative kinematics was measured using the navigation system after final implantation and closure of the retinaculum during passive full flexion and extension imposed by the surgeon. Under fluoroscopic surveillance in the sagittal plane, each patient was asked to perform sequential deep knee flexion under both weight bearing (WB) and non-weight bearing (NWB) conditions from full extension to maximum flexion. Repeated two-way ANOVA (tasks × flexion angles) were used, and then post-hoc test (paired t-tests with Boferroni correction) were performed. The level of statistical significant difference was set at 0.05 on two-way ANOVAs and 0.05 / 3 on post-hoc paired t-tests.

Mean range of motion between femoral and tibial components were Intra-operative (Intra): 28.0 ± 9.7, NWB conditions: 120.6 ± 11.1, WB conditions: 125.1 ± 12.9°, respectively. Mean ER (+) / IR (−) from 0° to 120° were Intra-operative (Intra): 9.3 ± 10.2°, NWB conditions: 8.1 ± 8.9, WB conditions: 5.2 ± 7.0, respectively. Mean MFT /LFT from 0° to 90° were Intra; 4.4 ±14.8/ 4.2± 8.5mm, NWB; 6.2 ± 6.9 / 9.2 ± 3.1 mm, WB; 9.2 ± 3.5 / 7.4 ± 2.8 mm, respectively. Mean MFT /LFT from 90° to 120° were Intra; −4.4 ± 2.5 / −5.7 ± 2.9 mm, NWB; −5.5 ± 1.8 / −8.2 ± 0.6 mm, WB; −4.0 ± 1.9 / −5.4 ± 2.3mm, respectively. Mean ADD/ABD from 0° to 120° were Intra;-4.2 ± 3.0, NWB; −0.2 ± 2.1, WB; −0.1 ± 0.8, respectively. Repeated two-way ANOVA showed a significant all interaction on kinematic variables (p<0.05). No statistically significant difference at post-hoc test was found in ER/ IR of all tasks and MFT /LFT of Intra vs NWB and Intra vs WB from 0° to 120° (p>0.05 / 3).

The Conditions of these tasks were different from each others. Our study demonstrated that intra-operative kinematics could predict post-operative kinematics.


M. Bonnin M. Saffarini A. de KoK M. Verstraete T. Van Hoof C. Van der Straten J. Victor

To determine the mechanisms and extents of popliteus impingements before and after TKA and to investigate the influence of implant sizing. The hypotheses were that (i) popliteus impingements after TKA may occur at both the tibia and the femur and (ii) even with an apparently well-sized prosthesis, popliteal tracking during knee flexion is modified compared to the preoperative situation.

The location of the popliteus in three cadaver knees was measured using computed tomography (CT), before and after implantation of plastic TKA replicas, by injecting the tendon with radiopaque liquid. The pre- and post-operative positions of the popliteus were compared from full extension to deep flexion using normosized, oversized and undersized implants (one size increments).

At the tibia, TKA caused the popliteus to translate posteriorly, mostly in full extension: 4.1mm for normosized implants, and 15.8mm with oversized implants, but no translations were observed when using undersized implants. At the femur, TKA caused the popliteus to translate laterally at deeper flexion angles, peaking between 80º-120º: 2.0 mm for normosized implants and 2.6 mm with oversized implants. Three-dimensional analysis revealed prosthetic overhang at the postero-superior corner of normosized and oversized femoral components (respectively, up to 2.9 mm and 6.6 mm).

A well-sized tibial component modifies popliteal tracking, while an undersized tibial component maintains more physiologic patterns. Oversizing shifts the popliteus considerably throughout the full arc of motion. This study suggests that both femoro- and tibio-popliteus impingements could play a role in residual pain and stiffness after TKA.


K. Yabuno M. Kanazawa N. Sawada

The purpose of this study is to evaluate accuracy of tibia cutting and tibia implantation in UKA which used navigation system for tibia cutting and tibia component implantation, and to evaluate clinical results.

We performed 72 UKAs using navigation system from November, 2012. This study of 72 knees included 56 females and 16 males with an average operation age of 74.2 years and an average body mass index (BMI) of 24.8 kg/m2. The diagnosis was osteoarthritis (OA) in 67 knees and osteonecrosis (ON) in 5 knees. The UKA (Oxford partial knee microplasty, Biomet, Warsaw, IN) was used all cases. We evaluated patients clinically using the Japanese orthopaedic association (JOA) score, range of motion (ROM), operation time, the amount of bleeding and complications. Patients were evaluated clinically at preoperation and final follow up in JOA score and ROM. As an radiologic examination, we evaluated preoperative and postoperative lower limb alignment in FTA (femoro-tibial angle) by weightbearing long leg antero-posterior alignment view X-rays. Also we evaluated a tibial component implantation angle by postoperative CT, and tibia cutting angle by intraoperative navigation system. We defined the tibial angle which a tibia functional axis and the tibia component made in coronal plane, also tibial posterior slope angle which a tibia axis and tibia component made in sagittal plane by CT. We measured tibial angle and tibial posterior slope angle by 3D template system.

We performed UKA in all cases mini-midvastus approach. At first we performed osteotomy of the proximal medial tibia using CT-Free navigation. At this procedure we performed osteotomy to do re-cut if check did cutting surface in navigation, and there was cutting error (>3°), and then to do check again in navigation. Next we did not use navigation and went the osteotomy of the distal femur with an IM rod and drill guide of microplasty system. And then we performed a trial and decided bearing gap and moved to cementing. At first we went cementing of the tibia component. At this procedure we went to drive implant again if check did implant surface in navigation, and there was implantation error(>3°), and to do check. We checked did tibia cutting, tibia implantation carefully in navigation. In addition, We sterilize a clips and use it came to be in this way possible for the check of the first osteotomy side exactly.

ROM was an average of 122.7° of preoperation became an average of 128.2° at final follow up, and JOA score was an average of 50.5 points of preoperation improved an average of 86.6 points at final follow up after UKA. An average of the operation time was 94 minutes, an average of the amount of bleeding was 137.7ml, and complications were one proximal type deep venous thrombosis (DVT) and one pin splinter joining pain by navigation, .Asetic loosening(tibial component) was one case, and this conversed the TKA.

In the radiologic evaluation, FTA was an average of 182.1° of preoperation corrected an average of 175.9°after UKA. In other words, an average of 6.2° were corrected by UKA. The tibia component implantation angle was an average of 90.18° in a measurement by the CT after UKA, intoraoperative tibia component implantation angle was an average of 90.32° in a measurement by the navigation system. These two differences did not accept the significant difference at an average of 1.33°.(P=0.5581). Similarly, the posterior slope angle were as follow; average of 5.65°by CT and average of 5.75°by navigation. These two differences did not accept the significant difference at an average of 1.33°. (P=0.6475)

Discussion: We performed UKA using navigation and evaluated the implantation accuracy for tibia osteotomy, tibia implantation. They were good alignment with an average of 90.18°, and outliers more than 3° were two cases(2.8%). It will be necessary to examine long-term progress including clinical results complications in future. We are performed UKA now in femur side using PSI(patient specific instruments) and tbia side using Navigation.


T. Navruzov C. Rivière C. Van Der Straeten S. Harris J. Cobb E. Auvinet A. Aframian F. Iranpour

The accurate positioning of the total knee arthroplasty affects the survival of the implants(1). Alignment of the femoral component in relation to the native knee is best determined using pre- and post-operative 3D-CT reconstruction(2). Currently, the scans are visualised on separate displays. There is a high inter- and intra-observer variability in measurements of implant rotation and translation(3). Correct alignment is required to allow a direct comparison of the pre- and post-operative surfaces. This is prevented by the presence of the prostheses, the bone shape alteration around the implant, associated metal artefacts, and possibly a segmentation noise.

The aim is to create a novel method to automatically register pre- and post-operative femora for the direct comparison of the implant and the native bone.

The concept is to use post-operative femoral shaft segments free of metal noise and of surgical alteration for alignment with the pre-operative scan. It involves three steps. Firstly, using principal component analysis, the femoral shafts are re-oriented to match the X axis. Secondly, variants of the post-operative scan are created by subtracting 1mm increments from the distal femoral end. Thirdly, an iterative closest point algorithm is applied to align the variants with the pre-operative scan.

For exploratory validation, this algorithm was applied to a mesh representing the distal half of a 3D scanned femur. The mesh of a prosthesis was blended with the femur to create a post-operative model. To simulate a realistic environment, segmentation and metal artefact noise were added. For segmentation noise, each femoral vertex was translated randomly within +−1mm,+−2mm,+−3mm along its normal vector. To create metal artefact random noise was added within 50 mm of the implant points in the planes orthogonal to the shaft. The alignment error was considered as the average distance between corresponding points which are identical in pre- and post-operative femora.

These preliminary results obtained within a simulated environment show that by using only the native parts of the femur, the algorithm was able to automatically register the pre- and post-operative scans even in presence of the implant. Its application will allow visualisation of the scans on the same display for the direct comparison of the perioperative scans.

This method requires further validation with more realistic noise models and with patient data. Future studies will have to determine if correct alignment has any effect on inter- and intra-observer variability.


A. Diez-Escudero M. Espanol G. Di Pompo E. Torreggiani G. Ciapetti N. Baldini M.P. Ginebra

The regenerative potential of bone grafts is tightly linked to the interaction of the biomaterial with the host tissue environment. Hence, strategies to confer artificial extracellular matrix (aECM) cues on the material surface are becoming a powerful tool to trigger the healing cascade and to stimulate bone regeneration. The use of glycosaminoglycans (GAGs), such as heparin, as aECM components has gained interest in the last years as a strategy to improve biological response. Calcium phosphates (CaP) are extensively used as bone grafts, however no studies have investigated the effect of GAG functionalisation on their surface. Some authors have focused on the effects of GAGs on osteoblastic cells, however, little work has been performed on the interaction with osteoclasts (OC), and still the reported effects are controversial [1]. The aim of this study was to investigate the effect of heparin on osteoclastic fate in terms of adhesion and differentiation.

Sintered CaP (β-TCP) and biomimetic CaP (calcium-deficient hydroxyapatite, CDHA) discs were synthesized at 1100 ºC and at 37ºC, respectively. Heparinisation was achieved though silane coupling (APTES) followed by amidation in the presence of EDC/NHS to covalently link heparin. The osteoclast response of heparinised (H) vsnon-heparinised substrates was studied using human monocytes as OC precursors. Tissue culture plastic (TCPS) was used as a control sample. Cell densities were 6·106and 3·106cells/cm2for biomaterials and TCPS, respectively. Cell cultures were supplemented every 3 days with 25% supernatant of osteoblast-like cell line as a source of RANKL, as well as other stimulating factors [2]. Tartrate-resistant acid phosphatase and Hoechst staining were used to evaluate OC adhesion, differentiation and morphology at different time points from seeding on the surfaces (14–21–28 days).

OC precursors showed adhesion on all substrates. β-TCP and β-TCP-H hosted higher number of OC precursors which might be related to the smoother sintered surface of the materials. Oppositely, the high roughness of CDHA and CDHA-H hamper the adhesion of OC, hence a lower number of cells was observed on heparin-coated and uncoated biomimetic apatites. However, the maturation of OC precursors was found to take place at earlier times (14days) on biomimetic substrates compared to sintered ones. TCPS, CDHA, CDHA-H and β-TCP-H showed clearly differentiated OC at 14 days, as revealed by TRAP positivity and multinuclearity. Interestingly, CDHA-H and β-TCP-H induced the highest multinuclearity among all differentiated OC. Both heparinised substrates point at an enhancing effect of heparin on OC maturation.

OC precursors are able to differentiate on β-TCP and CDHA substrates, a process enhanced when heparin functionalisation is performed on the materials surface. In our hands heparinisation is promoting OC differentiation at early time points, similarly to TCPS control. Interestingly, heparin substrates induced larger TRAP positive-OC and higher multinuclearity in the mature OC than TCPS control. As pointed out by Irie et al., heparin might interact through the RANKL/OPG ratio [3], thus inhibiting OPG activity and enhancing RANKL which triggers OC maturation.


A. Russo M. Bianchi M. Sartori A. Parrilli S. Panseri A. Ortolani M. Boi D.M. Salter M.C. Maltarello G. Giavaresi M. Fini V. Dediu A. Tampieri M. Marcacci

A critical bone defect may be more frequently the consequence of a trauma, especially when a fracture occurs with wide exposure, but also of an infection, of a neoplasm or congenital deformities. This defect needs to be treated in order to restore the limb function. The treatments most commonly performed are represented by implantation of autologous or homologous bone, vascularized fibular grafting with autologous or use of external fixators; all these treatments are characterized by several limitations.

Nowadays bone tissue engineering is looking forward new solutions: magnetic scaffolds have recently attracted significant attention. These scaffolds can improve bone formation by acting as a “fixed station” able to accumulate/release targeted growth factors and other soluble mediators in the defect area under the influence of an external magnetic field. Further, magnetic scaffolds are envisaged to improve implant fixation when compared to not-magnetic implants.

We performed a series of experimental studies to evaluate bone regeneration in rabbit femoral condyle defect by implanting hydroxyapatite (HA), polycaprolactone (PCL) and collagen/HA hybrid scaffolds in combination with permanent magnets.

Our results showed that ostetoconductive properties of the scaffolds are well preserved despite the presence of a magnetic component. Interestingly, we noticed that, using bio-resorbable collagen/HA magnetic scaffolds, under the effect of the static magnetic field generated by the permanent magnet, the reorganization of the magnetized collagen fibers produces a highly-peculiar bone pattern, with highly-interconnected trabeculae orthogonally oriented with respect to the magnetic field lines. Only partial healing of the defect was seen within the not magnetic control groups.

Magnetic scaffolds developed open new perspectives on the possibility to exploiting magnetic forces to improve implant fixation, stimulate bone formation and control the bone morphology of regenerated bone by synergically combining static magnetic fields and magnetized biomaterials. Moreover magnetic forces can be exploited to guide targeted drug delivery of growth factors functionalized with nanoparticles.


G. Di Pompo A. Diez-Escudero E. Benjamin Montufar M. Espanol G. Ciapetti N. Baldini M.P. Ginebra

The success of biomaterials lies in the direct interaction with the host tissue. Calcium phosphates (CaP) stand as an alternative graft material for bone regeneration due to their similar composition to natural bone. Few studies have focused on the early stages of bone-like material remodeling by osteoclasts (OC), though the CaP fate is to be resorbed and then replaced by new bone. Instead, to understand how osteoclasts modify the CaP surface and initiate resorption, so as to influence subsequent osteoblast activities and bone formation, is mandatory.

Sintered hydroxyapatite (s-HA) and biomimetic hydroxyapatite with two different microstructures (b-HA-C, coarse and b-HA-F, fine) discs (1500×250 µm2) were produced from the same reagents [1]. Tissue culture polystyrene (TCPS) was used as control. Precursor human OC from buffy coats were seeded on ceramic substrates [6·106cells/cm2] and supplemented with RANKL-containing osteoblast supernatant as differentiation medium over 21 days. Cell interaction with the biomaterials was investigated in terms of OC adhesion and differentiation, with gene expression, tartrate-resistant acid phosphatase (TRAP) and Hoechst staining for OC maturation. Cell culture supernatants were analyzed for ionic exchange, namely Ca and P, due to biomaterials or cells. Osteoclasts morphology was evaluated using SEM at 21 days. Innovatively, focused ion beam (FIB) was used to evaluate biomaterial structure beneath the OC to further investigate the resorption effects. To this aim, selected OC were cut cross-sectioned using a Gallium ion beam at an acceleration of 30KV, followed by a coarse milling at 10nA and a deposition of platinum to achieve a fine milling at 500pA.

Clear differences in cellular behavior were noted relative to the different substrate microstructures. Control TCPS and s-HA showed similar TRAP-positive staining and gene expression for mature OC. Several resorption pits with partial dissolution of the equiaxial grains of s-HA were noticed. b-HA substrates also showed attached and differentiated TRAP-positive OC, but gene expression resulted lower than control and s-HA. However, morphological evaluation with SEM-FIB interestingly showed early stages of osteoclast-mediated degradation on b-HA-F, i.e.an increased surface roughness in the substrate underlying cells. B-HA-C also showed attached and mature OC with a scarce degradation activity

FIB technique has been applied to cell-seeded CaP and shown as a viable method to investigate OC morphology and resorption. Though gene expression showed similarities for both biomimetic substrates, substrate morphology observed underneath OC was significantly different. b-HA-F showed early stages of OC mediated degradation underneath well spread cells similar to those seen on s-HA. No resorptive activity was found on b-HA-C even though gene expression values were similar to b-HA-F: both the acute ion exchange and the surface tortuosity on b-HA-C could explain the difficulty with the resorptive process by OC. In conclusion focused ion beam technique complements SEM imaging and may disclose changes in the inner structure of materials due to cell/material interactions.


I. Manjubala P. Basu U. Narendrakumar

Bone grafting utilises tissue harvesting from second anatomic location of same patient (autograft) or from a human donor (allograft) to treat bone defects. Limited availability of bone grafts, donor site morbidity and risk of disease transmission led to an alternative strategy for bone grafting as synthetic materials that can promote bone regeneration. Engineered bone grafts are biocompatible and possess sufficient mechanical strength to support fractured bone. Polymer scaffolds lack mechanical stability whereas ceramic scaffolds are stiffer resulting in loosening of implants. Combining polymer and ceramic to form scaffolds can enhance the physical and mechanical properties and can be used for bone tissue engineering. We hypothesised that the nucleation of hydroxyapatite in carboxymethyl cellulose (CMC) matrix would improve scaffold properties physically and mechanically; thus, demonstrating CMC based biomimetic process to synthesise novel CMC/ HA scaffolds with suitable physical, mechanical and biological properties for bone tissue engineering.

CMC/ HA scaffolds were synthesized by in situmethod at room temperature (RT) and 60°C and are labelled as CHRT and CH60 respectively, keeping the molar ratio of Ca/P as constant ∼1.6. The nucleation of hydroxyapatite (HA) from calcium chloride (CaCl2) and sodium dihydrogen phosphate (NaH2PO4) was initiated inside carboxymethyl cellulose (CMC). CaCl2solution was introduced gently in aqueous solution of CMC, thereafter; NaH2PO4solution was added dropwise and the mixture was stirred vigorously, kept overnight for aging at RT to obtain milky white slurry. The slurry was washed with distilled water to neutralize, cast into moulds and dried in hot air oven for 72 h to obtain scaffolds. Scanning electron microscopy (SEM) was performed to determine the surface topography of the scaffolds. Mechanical properties were tested with Universal Testing Machine (UTM) and cytotoxicity was performed by MTT assay using fibroblast cells (NIH 3T3).

SEM images shows that HA aggregates like beads and knitted orderly over CMC backbone. There is an increase in HA agglomerates and decrease in bead size with increase in synthesis temperature from RT to 60°C. Scaffolds synthesized at 60°C show enhanced mechanical properties. Compressive strength of CHRT and CH60 are 0.68 MPa and 0.9 MPa respectively and compressive moduli of CHRT and CH60 are 33 MPa and 69 MPa respectively. MTT assay confirmed proliferation of fibroblast cells, hence; proved the non-toxic nature of the scaffolds. MTT assay reveals the cell viability (cell exoskeleton) on the scaffolds after 24 h incubation.

In this study, CMC/ HA scaffolds were synthesised by in situmethod at RT and 60°C. Enhanced mechanical properties and cytocompatibility reveal the potentiality of the scaffolds for bone tissue engineering purposes.


M. Cazzola S. Ferraris E. Bertone E. Prenesti I. Corazzari A. Cochis L. Rimondini S. Spriano E. Vernè

Among plant derived molecules, polyphenols have antioxidant, anticancer and antibacterial ability [1,2]. Moreover, they can stimulate osteoblast differentiation and promote apoptosis of tumoral cells [3–4]. It's thus possible combine the properties of these molecules with those of bioactive materials trough surface functionalization.

A silica-based bioactive glass and chemically treated bioactive Ti6Al4V were used as substrates while gallic acid and polyphenols extracted from green tea or red grape skin as biomolecules for functionalization. The surface functionalization procedure was optimized in order to maximize the grafting and investigated by means of the Folin&Ciocalteu method and X-Ray Photoelectron Spectroscopy (XPS) analyses. The in vitrobioactivity was studied by means of Field Emission Scanning Electron Microscopy (FESEM) and Fourier Transform Infrared Spectroscopy (FTIR) after soaking in simulated body fluid (SBF).

Surface charge and isoelectric point were investigated by means of zeta potential measurements. Free radical scavenging activity evaluation was performed in order to investigate the antioxidant ability of glass samples. Finally, the functionalization selective killing activity towards osteosarcoma cells was in vitroassayed by the metabolic 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) test and compared with non-tumoral control bone cells.

The presence of polyphenols on the surfaces was confirmed by XPS analyses by the appearance of characteristic peaks (C-O and C=O bonds) in the carbon and oxygen regions. The Folin&Ciocalteu test demonstrated the presence and activity of polyphenols on all the substrates and evidenced a clear relation between surface reactivity and grafting ability. The bioactivity tests showed the deposition of hydroxyapatite on the functionalized samples and an influence of biomolecules on its amount and shape for glasses. Zeta potential measurements evidenced a shift of the isoelectric point of glass samples after functionalization. A certain antioxidant activity of bare glass has been evidenced and it is improved by the grafting of tea polyphenols. Accordingly, MTT results confirmed polyphenols selective killer activity towards osteosarcoma cells whose viability was significantly decreased in comparison with safe bone cells.

XPS analyses, zeta potential measurements and Folin&Ciocalteu tests showed the presence and the activity of the polyphenols on the surfaces. Bioactivity tests highlighted an improvement of the deposition of hydroxyapatite on the surface of the functionalized glass samples. Certain antioxidant ability has been evidenced for glass samples and was further improved by tea polyphenols. Moreover, a selective toxic activity towards tumor cells was in vitropreliminary confirmed.

In conclusions polyphenols were successfully grafted to the surface of glass and Ti6Al4V samples maintaining their activity. Polyphenols improve in vitro bioactivity, antioxidant and anticancer ability of glass. The surface functionalization seems to be a good way to combine the properties of bioactive materials for bone contact applications with those of polyphenols.


M. Maisani R. Bareille L. Levesque J. Amédée D. Mantovani O. Chassande

First works focuses on the characterization (physical and biological) of this biomaterial. Current work had studied osteoinductive and osteoconductive capacity of these hydrogels. In vivoresults highlight a significant bone reconstruction two months after implantations on bone lesions in mice.

Bone is a dynamic and vascularized tissue that has the ability of naturally healing upon damage. Nevertheless, in the case of critical size defects this potential is impaired. Present approaches mainly consider autografts and allografts, which presents several limitations. Bone Tissue Engineering (BTE) is based on the use of 3D matrices to guide both cellular growth, differentiation to promote bone regeneration. Hence, matrices can contain biological materials such as cells and growth factors. Our project aims to design a hydrogel for BTE, particularly for bone lesion filling. We previously showed that a porous 3D hydrogel, Glycosyl-Nucleoside-Fluorinated (GNF) is: 1) non-cytotoxic to clustered human Adipose Mesenchymal Stem Cells (hASCs), 2) bioinjectable and 3) biodegradable. Therefore, this novel class of hydrogels show promise for the development of therapeutic solutions for BTE [1]. The hypothesis of this research was that improving the capacity to promote the adhesion of cells by adding collagen gel matrices and bone morphogenic protein 2 (BMP-2) to improve the bone regenerative potential of this gel. Collagen is a protein matrix well known for its cytocompatibility [2]. BMP-2, have been shown ability to induce bone formation in combination with an adequate matrix [3]. Thereby, the overall aim of this work was to design, develop and validate a new composite hydrogel for BTE.

GNF was prepared as previously described in detail[1], at a concentration of 3% (w/v). Type I-collagen gel was prepared from rat-tail tendons at a concentration of 4 g/L [2]. hASCs were isolated from human adipose tissue in our laboratory. To establish a suitable microenvironment for cell proliferation and differentiation cells were seeded in collagen and then GNF gel was added and the resulting mixture was blended, BMP-2 (InductOs ® Kit) is added to this preparation (5µm BMP-2/ml). Fluorometry was used to follow BMP2 release in vitro andin vivo(NOG mices;n=6), orthotopic calvariumbone critical defect (3.3 mm) has been selected to challenge the bone repair.

Adding collagen hydrogel improve cell adhesion, survivals and proliferation rather than simple GNF hydrogel. This novel gel composite has the ability to sustain hASCs adhesion and differentiation towards the osteoblastic lineage (positive ALP cells). Fluorometry showed the ability of our hydrogel to prolong the residence of BMP-2 (in vitro and in vivo) compared to collagen hydrogel sponges. Implantation of hydrogel containing hASC and BMP-2 has shown encouraging results in bone reconstruction: 2 months after implantation of biomaterials a significant bone reconstruction can be observed using X-Ray imaging.

Adding collagen to GNF allowed to obtain gels showing satisfactory cell-behaviour. In parallel, the presence of GNF hydrogel helps to improve mechanical properties of the biomaterial (hydrogel stability and controlled release of BMP-2). The first in vivostudies have shown encouraging bone regeneration capacity of these hydrogels. The implantation performed on a larger number of animals and quantitative microCT analysis will enable us to judge the effectiveness of this hydrogel as a new injectable biomaterial for BTE.

This work was partially supported by NSERC-Canada, FRQ-NT-Quebec, FRQ-S- Quebec, and CFI-Canada. Mathieu Maisani was awarded of a NSERC CREATE Program in Regenerative Medicine (www.ncprm.ulaval.ca).


V. Danesi G. Tozzi R. Soffiatti L. Cristofolini

Prophylactic augmentation is meant to reinforce the vertebral body (VB), but in some cases it is suspected to actually weaken it. To elucidate the biomechanical efficacy of prophylactic augmentation, the full-field three-dimensional strain distributions were measured for the first time inside prophylactic-augmented vertebrae.

Twelve thoracic porcine vertebrae were assigned to three groups: 4 were augmented with bone cement for vertebroplasty (Mendec-Spine, Tecres), 4 were treated with another bone cement for vertebroplasty (Calcemex-Spine, Tecres) while the other 4 were tested untreated as a control. Destructive tests were carried out under axial compression, in a step-wise fashion (unloaded, 5%, 10% and 15% compression). At each loading step, μCT-images were acquired. The internal strain distribution was investigated by means of DVC analysis.

Some augmented specimens were stronger than the respective control, while others were weaker. In most of the specimens, the strain distribution in the elastic regime (5% compression) seemed to predict the location of the micro-damage initiation before it actually became identifiable (at 10% and 15% compression). The measured strain had the same order of magnitude for all groups. However, in the control vertebrae, the highest strain would unpredictably appear at any location inside the VB. Conversely, for both augmentation groups, the highest strains were measured in the regions adjacent to the injected cement mass, whereas the cement-interdigitated-bone was less strained. Localization of high strains and failure was consistent between specimens, but different between the two cement types: with Mendec-Spine failure the highest strains were mainly localized at mid-height and at the same level where the cement mass was localized; with Calcemex-Spine failure the highest strains were mainly cranial and caudal to the cement mass.

Both the micro-CT images, and the DVC strain analysis highlighted that:

The cement mass was less strained than any other regions in the vertebra. Failure never started inside the cement mass. This can be explained with the additional stiffening and reinforcement associated with the infiltration of the cement inside the trabecular bone.

The highest strains and failure were localized in the bone adjacent to the cement-bone interdigitated region. This can be explained by the strain concentration between the cement-interdigitated bone (stiffer and stronger), and the adjacent non-augmented trabecular bone

The strain maps in the elastic regime and the localization of failure was different in the augmented vertebrae, when compared to the natural controls. This suggests an alteration of the load sharing in the augmented structure where the load is mostly carried by the cement region.

The different localization of failure initiation between the two augmented groups could be explained by the different mechanical properties of the two cements.

This study has demonstrated the potential of DVC in measuring the internal strain and failure in prophylactic-augmented vertebrae. It has been shown that failure starts inside the augmented VB, next to the injected cement mass. This can help establishing better criteria (in terms of localization of the cement mass) in order to improve clinical protocols for vertebroplasty surgical procedures.


R. Kabariti

There has been a recent surge in the creation of medical student-led and foundation trainees-led research collaboratives in surgery. These have mainly been in general surgery. The current study therefore explores the value and feasibility of such collaboratives, highlighting the scope for a similar idea in orthopaedics.

Research Collaborative organisations were systematically searched and reviewed to check whether medical students or junior doctors prior to speciality training led them. The advertised research projects and subsequent publication productivity for each identified organisation was also evaluated using the information presented on their websites.

Two medical student-led research collaborative organisations and 1 medical student and foundation trainees-led research collaborative were identified. All of which are in general surgery and none in trauma and/or orthopaedics surgery. These include STARSurg, EuroSurg and GlobalSurg respectively. A total of 6 research collaborative projects were identified with 3 leading to subsequent publications.

This study highlights the value and feasibility of medical students- and foundation trainees-driven high quality surgical research collaborative. It also emphasises the growing contribution of medical students towards research and policymaking in our global health system, an aspect that may be absent or delayed in the field of orthopaedics. We therefore, explore the idea as well as the need to instigate a similar collaboration in the field of trauma and orthopaedic surgery.


K. van Hamersveld E. Valstar S. Toksvig-Larsen

Whether it is best to retain the posterior cruciate ligament in the degenerated knee, i.e. using a cruciate-retaining (CR) total knee prosthesis (TKP), or to use a more constraint posterior-stabilized (PS) TKP is of debate. There are limited studies comparing the effect of both methods on implant fixation and clinical outcome, leaving it up to the surgeon to base this decision on anything but conclusive evidence. We assessed the effect of two different philosophies in knee arthroplasty on clinical outcome and tibial component migration measured with radiostereometric analysis (RSA), by directly comparing the CR and PS version of an otherwise similarly designed cemented TKP.

Sixty patients were randomized and received a Triathlon TKP (Stryker, NJ, USA) of either CR (n=30) or PS (n=30) design. RSA measurements (primary outcome) and clinical scores including the Knee Society Score and Knee injury and Osteoarthritis Outcome Score were evaluated at baseline, at three months postoperatively and at one, two, five and seven years. A linear mixed-effects model was used to analyse the repeated measurements.

Both groups showed a similar implant migration pattern, with a maximum total point motion at seven years follow-up of around 0.8 mm of migration (mean difference between groups 95% CI −0.11 to 0.15mm, p=0.842). Two components (one of each group) were considered to have an increased risk of aseptic loosening. Both groups improved equally after surgery on the KSS and KOOS scores and no differences were seen during the seven years of follow-up.

No differences in implant migration nor clinical results were seen seven years after cruciate-retaining compared to posterior-stabilized total knee prostheses.


N. Furness D. Marsland N. Hancock A. Qureshi

The TL Hex (Orthofix) is a relatively new hexapod frame system that we have been using at our institution since August 2013 to treat acute fractures and correct tibial and femoral deformity. We report our initial experience of 48 completed treatments with this novel system in 46 patients and discuss illustrative cases.

For acute fracture, 30 patients (24 male, 7 female) required framing with a mean age of 43 years (range 19–80). One patient underwent bilateral framing. The tibia was involved in all cases. In two cases, the femur also required framing. Open fractures occurred in 13 cases (43.3%).

For elective limb reconstruction, 16 patients (14 male, two female) required framing with a mean age of 35 years (range 16–67). One patient underwent bilateral framing. The tibia was involved in all but one case, which affected the femur. Surgical indications included congenital deformity in four cases, malunion in eight cases, non-union in three cases and chronic infection in two cases.

For acute fractures, the mean frame time was 164 days (range 63–560) and all but one fracture achieved union. Complications included pin, wire or strut failure requiring adjustment (three patients) and pin site infection (six patients). Three patients are being considered for residual deformity correction or treatment of non-union.

In the elective limb reconstruction group, mean frame time was 220 days (range 140–462). All treatments successfully achieved deformity correction and bone union. Complications included two pin site infections. There was no evidence of recurrence of infection in the two osteomyelitis cases.

In conclusion, the TL Hex frame system appears to be a safe and reliable tool for limb reconstruction. We have observed acceptable frame times, low complication rates and almost 100% bony union.


J. O'Callaghan D. Clark M. Jackson J. LIvingstone S. Mitchell R. Atkins

The implementation of knee arthrodesis has become synonymous with limb salvage in the presence of chronic sepsis and bone loss around the knee. This can be seen in failed trauma surgery or knee arthroplasty as an alternative to trans-femoral amputation. There is no prior literature assessing which factors affect knee arthrodesis using external fixation devices.

Sixteen consecutive patients (four women and twelve men) made up of eleven infected knee implants, three internal fixations of the tibial following fractured tibial plateau as well as 2 infected native joints were identified. The mean age at initial surgery was 56 years (range 25 to 82 years). All procedures were performed under the direct supervision of the limb reconstruction teams using a standard protocol with either a Taylor spatial frame or Ilizarov frame. The patient records, microbiology results and radiographs of all patients who underwent knee arthrodesis at this institution between 1999 and 2010 were reviewed.

Of the 16 patients in this study knee fusion occurred in eleven patients (69%). The five patients where arthrodesis failed all had significant bone loss on the pre-operative radiographs and confirmed at surgery. We found a relationship between a significant infection of the knee with MRSA and failure to fuse. Three of the five patients had MRSA isolated from inside the knee at some stage during their treatment.

The five patients where fusion failed were on average older (mean age 63 years against 51 years) and had more extensive bone loss. Those who failed to fuse had more co-morbidities. We would conclude that where there is little or no bone loss, arthrodesis of the knee can be reliably achieved with the use of circular frame fixation. A greater number of negative factors also prolongs the amount of time spent in the external fixator. The presence of significant bone loss, infection, increased age and multiple co-morbidities requires careful evaluation and consideration of trans-femoral amputation as an alternative.


G. Valente G. Crimi L. Cavazzuti M.G. Benedetti E. Tassinari F. Taddei

In the congenital hip dysplasia, patients treated with total hip replacement (THR) often report persistent disability and pain, with unsatisfactory function and quality of life. A major challenge is to restore the center of rotation of the hip and a satisfactory abduction function [1]. The position of the acetabular cup during THR might be crucial, as it affects abduction moment and motor function. Recently, several software systems have been developed for surgical planning of endoprostheses. Previously developed software called HipOp [2], which is routinely used in clinics, allows surgeons to properly position the prosthetic components into the 3D space of CT data. However, this software did not allow to simulate the articular range of motion and the condition of the abductor muscles. Our aim is to present HipOpCT, an advanced version of the software that includes 3D musculoskeletal planning, through the application to hip dysplasia patients to add knowledge in the diagnosis and treatment of such patients who need THR.

40 hip dysplasia patients received pre-operative CT scanning of pelvis and thighs and had their THR surgery planned using HipOpCT. The base planning includes import of CT data, positioning of prosthetic components interactively through multimodal display, as well as geometrical measurements of the implant and the host bone. The advanced planning additionally includes evaluation of femoro-acetabular impingement and calculation of leg lengths, abductor muscle lengths and lever arms through the automatic creation of a musculoskeletal model. The musculoskeletal parameters in all patients were calculated during the surgical planning, and the data were processed to evaluate pre- and post-operative differences in leg length discrepancy, length and lever arm of the abductor muscles, and how these parameters correlated.

The surgical planning led to an increase in the operated leg length of 7.6 ± 5.7 mm. The variation in abductors lever arm was −0.9% ± 4.8% and significantly correlated with the variation in the operated leg length (r = −0.49), pre-operative leg length discrepancy (r = 0.32) and variation in abductors length (r = −0.32). The variation in abductors length was 6.6% ± 5.5%, and significantly correlated with the variation in the operated leg length (r = 0.92), post-operative leg length discrepancy (r = 0.37), pre-operative abductors length (r = −0.37) and variation in abductors lever arm (r = −0.32).

The increase in the operated leg length was strongly correlated to the increase in abductor muscle length. Conversely, abductor lever arms slightly decreased on average, and were inversely correlated to leg length variation and abductors lengths. This interactive technology for surgical planning represent a powerful tool for orthopaedic surgeons to consider the best muscle reconstruction, and for rehabilitation specialists to achieve the best functional recovery based on biomechanical outcomes. In a parallel study, we are investigating how these advanced planning is reflected onto the function, pain and biomechanical outcome after a rehabilitation protocol is completed.


F. Iranpour

Constitutional knee varus increases the risk of medial OA disease due to increase in the knee adduction moment and shifting of the mechanical axis medially. Hueter-Volkmann’s law states that the amount of load experienced by the growth plate during development influences the bone morphology. For this reason, heightened sports activity during growth is associated with constitutional varus due to added knee adduction moment. In early OA, X-rays often show a flattened medial femoral condyle extension facet (EF). However, it is unknown whether this is a result of osteoarthritic wear, creep deformation over decades of use, or an outcome of Hueter-Volkmann’s law during development. A larger and flattened medial EF can bear more weight, due to increased load distribution. However, a flattened EF may also extrude the meniscus, leading meniscus degeneration and joint failure. Therefore, this study aimed to investigate whether varus knees have flattened medial EFs of both femur and tibia in a cohort of patients with no signs yet of bony attrition.

Segmentation and morphology analysis was conducted using Materialise software (version 8.0, Materialise Inc., Belgium). This study excluded knees with bony attrition of the EFs based on Ahlbäck criteria, intraoperative findings, and operation notes history. Standard reference frames were used for both the femur and tibia to ensure reliable and repeatable measurements. The hip-knee-angle (HKA) angle defined varus or valgus knee alignment. Femur: The femoral EFs and flexion facets (FFs) had best-fit spheres fitted with 6 repetitions. Tibia: The slopes of the antero-medial medial tibial plateau were approximated using lines. Results 72 knees met the inclusion and exclusion criteria. The average age was 59 ± 11 years. The youngest was 31 and the oldest 84 years. Thirty-three were male and 39 were female. There was good intra- and inter-observer reliability for EF sphere fitting.

Femur: The results demonstrated that the medial femoral condyle EF is flattened in knees with constitutional varus, as measured by the Sphere Ratios between the medial and lateral EF (varus versus straight: p = 0.006), and in the scaled values for the medial EF sphere radius (varus versus straight: p = 0.005). There was a statistically significant, moderate and positive correlation between the medial femoral EF radius, and the medial femoral EF-FF AP offset.

Tibia: There was a statistically significant difference between the steepness of the slopes of the medial tibial plateau EF in varus and valgus knees, suggesting varus knees have a less concave (flatter) medial EF. Conclusions In comparison to straight knees, varus knees have flattened medial EFs in both femur and tibia. As this was the case in knees with no evidence of bony attrition, this could mean flattened medial EFs may be a result of medial physis inhibition during development, due to Hueter-Volkmann’s law. Flattened medial EFs may increase load distribution in the medial compartment, but could also be a potential aetiology in primary knee OA due to over extrusion of the medial meniscus and edge loading.


A. Decambron A. Fournet M. Manassero M. Bensidhoum D. Logeart-Avramoglou H. Petite V. Viateau

Bone tissue engineering constructs (BTEC) combining natural resorbable osteoconductive scaffolds and mesenchymal stem cells (MSCs) have given promising results to repair critical size bone defect. Yet, results remain inconsistent. Adjonction of an osteoinductive factor to these BTEC, such as rh-BMP-2, to improve bone healing, seems to be a relevant strategy. However, currently supraphysiological dose of this protein are used and can lead to adverse effects such as inflammation, ectopic bone and/or bone cyst formation. Interestingly, in a preliminary study conducted in ectopic site in a murine model, a synergistic effect on bone formation was observed only when a low dose of rh-BMP-2 was associated with MSCs-seeded coral scaffolds but not with a high dose.

The objective of the study was then to evaluate a BTEC combining coral scaffold, MSCs and a low dose of rh-BMP-2 in a large animal model of clinical relevance.

Sixteen sheep were used for this study.

MSCs were isolated from an aspirate of bone marrow harvested from the iliac crest of each sheep receiving BTEC with MSCs, cultivated and seeded on Acroporacoral scaffolds one week before implantation.

Rh-BMP-2, used at two different doses (low dose: 68μg/defect and high dose: 680μg/defect), was diluted and absorbed on Acroporacoral scaffold one day before implantation.

Metatarsal segmental bone defects (25 mm) were made in the left metatarsal bone of the sheep, stabilized by plate fixation, and filled with Acroporacoral scaffolds loaded with either (i) MSCs and a low dose of rh-BMP-2 (Group 1;n=6), (ii) a low dose of rh-BMP-2 (Group 2;n=5), (iii) a high dose of rh-BMP-2 (Group 3;n=5). Standard radiographs were taken after each surgery and each month until sheep sacrifice, 4 months postoperatively. Bone healing and scaffold resorption were assessed by micro-computed-tomography (μCT) and histomorphometry. Results were compared to a historical control group in which coral scaffolds were loaded with MSCs.

Bone volumes (BV) evaluated by μCT and bone surfaces (BS) evaluated by histomorphometry did not differ between groups (BV: 1914±870, 1737±841, 1894±1028 and 1835±1342 mm3; BS: 25,41±14,25, 19,85±8,31, 25,54±16,98 and 26,08±22,52 %; groups 1, 2, 3 and control respectively); however, an higher bone union was observed in group 1 compared to the others (3, 1, 2 and 2 sheep with bone union in groups 1, 2, 3 and control respectively). No histological abnormalities were observed in any group. Coral resorption was almost complete in all specimens. No significant difference in coral volumes and coral surfaces was observed between groups. A trend towards a higher variability in coral resorption was noted in group 1 compared to the others.

There seems to be a benefit to associate low dose of rh-BMP-2 with MSCs-seeded coral scaffolds as this strategy allowed an increase of bone unions in our model. Yet, results remain inconsistent. Although, defective coupling between scaffold resorption and bone formation impaired bone healing in some animals, adjunction of rh-BMP-2 (even at low dose) to CSMs loaded construct is a promising strategy for bone tissue engineering.


E. Gunzel F. Gindraux L. Barnouin

Amniotic membrane (AM) and amnion/chorion foetal membranes (ACM) are mainly composed of collagen & laminin layers and constitute relatively new materials to the dental market. They have proven effective for periodontal treatments such as Guided Tissue Regeneration (GTR) [1–3].

Based on our expertise in the field of lyophilisation & securisation of human bone allograft (Phoenix® process), we aimed to develop our own process applied to ACM and to control its in vivoefficacy in GTR indication.

Human placentas were donated under informed consent. ACM were separated from placenta and processed with a proprietary AMTRIX (TBF) Process. Resulting product was called ACMTRIX.

The effectiveness of ACMTRIX in GTR was evaluated using an in vivorat calvaria defect model as followed:

Empty defect (2 animals),

ACMTRIX apposed onto the defect (4 animals),

3 Bone substitutes (allogenic – mineralized cortical bone powder (Phoenix®); demineralized cancellous bone powder mixed with hydroxyapatite and demineralized bone matrix (DBM) cancellous block) filled in the defect and covered by ACMTRIX (4 animals).

One animal per study group was sacrificed after 8 weeks, all others after 8 weeks.

Evaluations were performed by: macroscopic observations, X Ray micro-CT, and histological analysis.

For all groups using ACMTRIX, no major sign of inflammation were observed macroscopically and histologically. Moreover, bone tissue was already mature from 8 weeks and bone filling was slight to moderate.

The higher mean rate of mineralization was obtained for the group associating DBM cancellous block + ACMTRIX.

Although a xenogenic material, ACMTRIX was very well integrated without significant inflammatory reaction compared to empty defect and fully integrated in subcutaneous area.

The mineralization was superior with DBM cancellous block probably thanks to the stabilization of the material in the defect. Used alone, ACMTRIX has no osteogenic potential.

In conclusion, ACMTRIX has the potential to function as barrier for GTR and the unique properties associated with this material can augment its potential as a matrix for periodontal regeneration.


D. Maurel D. Le Nihouannen R. Aid S. Delmond D. Letourneur J. Amédée S. Catros

Bone grafts are crucial for the treatment of bone defects caused by tumor excision. The gold standard is autograft but their availability is limited. Allografts are an alternative, but there is a risk of rejection by the immune system. The tissue engineering field is trying to develop vascularized bone grafts, using innovative biomaterials for surgery applications. While the gold standard in bone graft in dentistry is the use of decellularized bovine bone particles (Bio-Oss®), our work has produced a polysaccharide-based composite matrix (composed of PUllulan, DextraNand particles of HydroxyApatite (PUDNHA), as a new scaffold for promoting bone formation and vascularization of the tissue. In the context of bone tissue regeneration, the function of osteoblast and endothelial cells has been extensively studied, while the impact of osteocytes has been regarded as secondary. Nonetheless, the osteocytes represent 90–95% of bone cells and are responsible for orchestration of bone remodeling.

Here, we propose an original method to analyze the interaction between bone and biomaterials, after in vivo implantation of the matrix PUDNHA in an experimental sheep model. Our objectives are to analyze the network established by osteocytes in the newly formed tissue induced by the matrix, as well as their interactions with the blood vessels.

Sheep have been implanted with the Bio-Oss® or the PUDNHA using the sinus lift technique. After 3 (3M) and 6 months (6M), the animals were euthanazied and the explants were fixed, analyzed by X-ray, embedded in Methylmetacrylate/Buthylmetacrylate and analyzed histologically by Trichrome staining. Thereafter, the samples (n=3/group) were polished using different sand papers. A final polish was realized using a 1µm Diamond polishing compound. The blocks were incubated 10 or 30s with 37% phosphoric acid to remove the mineral on the surface, then dipped in 2.6% sodium hypochlorite to remove the collagen. The samples were air dried overnight, metallized with Gold palladium the following day, before being imaged with a SEM.

As expected, PUDNHA activates bone regeneration in this sinus lift model after 3M and 6M. X-ray analysis and histological data revealed more bone regeneration at 6M versus 3M in both groups. With this acid eching technique, we were able to visualize the interface of bone with the biomaterials. This treatment coupled with SEM analysis, confirmed the increase of bone formation with time of implantation in both groups. In addition, SEM images revealed that osteocyte alignment and their network were different in the new regenerated bone compared to the host bone. Moreover, images showed the direct contact of the osteocytes with the blood vessels formed in the new regenerated bone.

This acid eching technique can be useful in the field of biomaterials to see the relationship between cells, blood vessels and the material implanted and understand how the new bone is forming around the different biomaterials.


A.R. Armiento D. Eglin M.J. Stoddart

Mesenchymal stromal cells (MSCs) have been intensively researched in the orthopaedic field since they hold great promise for aiding the regeneration of musculoskeletal tissues. While there are a range of postulated surface markers to identify MSCs, currently there are no known cell markers that predict in vivo osteochondral potency. Runt-related transcription factor 2 (Runx2) is considered as an essential transcription factor in osteoblast differentiation [1] and has been shown to physically interact with retinoblastoma protein (pRb), which leads the loss of osteoblast proliferation and the activation of genes concerning terminal differentiation of osteoblasts [2]. The aim of this study was to use adenoviral-mediated gene overexpression/knockdown to investigate the interplay between Runx2 and pRb during in vitro osteogenic differentiation of human bone marrow (hBM)-MSCs.

A first generation human adenovirus (hAd) serotype 5 dE/E3 carrying the gene of interest (Runx2 or shRNA-Runx2) were propagated and amplified in AD-293 cells, and purified over successive CsCl gradients. A second generation hAd serotype 5 carrying the gene of interest (Rb1) was generated. High efficiency single or double transduction of undifferentiated hBM-MSCs was achieved using lanthofection [3]. The transduced hBM-MSCs were then differentiated in osteogenic medium (OM) and osteogenic potency was assessed by quantification of alkaline phosphatase (ALP) activity (day 14) and Alizarin red staining (day 28). In addition, cell cultures were assessed for absorbance at OD 450nm, correlating to the refractive index of calcified areas, at days 0, 7, 14, 21 and 28 [4]. Quantitative RT-PCR was used to confirm expression of target genes following viral transduction. Basal medium was used as a control.

Untransduced hBM-MSCs cultures grown in OM demonstrated peak calcium deposition at day 28, while the overexpression of either Runx2 or Rb1 accelerated peak calcium deposition to day 21. Consistent with this, Runx2 overexpression increased ALP activity of hBM-MSCs cultured in OM, while Rb1 overexpression enhanced ALP activity of hBM-MSCs cultured in both basal and osteogenic conditions. Co-expression of Runx2 and Rb1 did not further increase ALP activity compared to cells transduced with Runx2 or Rb1 alone.

Alizarin red staining revealed that overexpression of either Runx2 or Rb1 increased mineral deposition in hBM-MSCs under basal conditions, although mineralisation was not enhanced above that of untransduced cells when cultured in OM. However, mineralisation was markedly enhanced above levels in untransduced cells when Runx2 and Rb1 were co-expressed in hBM-MSCs grown under both basal and osteogenic conditions.

This study demonstrates an important stimulatory role of pRb in enhancing ALP activity of hBM-MSCs in the absence of osteogenic clues. However, pRb overexpression alone is insufficient to enhance mineralisation, requiring the co-expression of Runx2 in hBM-MSCs. The crucial nature of Runx2 for osteogenic differentiation of hBM-MSCs was demonstrated since knockdown of Runx2 prevented both mineral deposition and the increased ALP activity observed in untransduced cells grown in OM. Interestingly, overexpression of Rb1 could not compensate for the knockdown of Runx2 since Rb1 overexpression did not recover either mineral deposition or ALP activity in hBM-MSCs where Runx2 expression was inhibited.


A. van der Veen J.H. Koolstra J. van Dieen

The main load on the disc is a compression load. In humans this leads to a 16hrs loading phase followed by 8hrs of rest. Loads due to daily activities are superimposed on this diurnal pattern. The mechanical effect of the diurnal loading part is a slow, time dependent, change of disc height. This time dependent deformation can be described by a four parameter model (Double Kelvin-Voigt). This model describes the mechanical behaviour in a slow and a fast regime. In the present research we describe the changes during the loading phase with a constant load or constant deformation. We expect these changes to be dependent on disc size.

Ten motion segments (L2L3 and L4L5) of rabbits, rats and pigs were tested in a saline bath. The posterior part of the motion segment was removed. Both outer endplates of the motion segment were embedded in bone cement and connected to the loading device. The maximum load was half of the body weight (bw). Protocol for rat and rabbit: Step1: preload (5%bw, 4hrs) Step2: Creep test (load 50%bw, 4hrs) Step3: preload (5%bw, 4hrs) Step4: Stress relaxation test (the deformation at 50%bw was maintained for 4hrs.). Protocol porcine: Due to the large disc size of the porcine samples duration of each test phase was increased to 12hrs. The applied load and the change of disc height was measured at 2/s. The time dependent mathematical model (Matlab) consists of two spring-damper combinations: the first modelling a fast mechanical change, the second a slow mechanical change. Both the time dependent behaviour of the creep experiment and of the stress relaxation experiment were determined. The influence of disc size was expressed in terms of volume, periphery, disc height, cross sectional area, wet area and ratio volume vs wet area.

We found a large difference of time constants between the creep experiment and the stress relaxation experiment. In both, the time constants increased with disc size for the slow regime but decreased with disc size for the fast regime.

Time constants of the slow regime (hrs) vs fast regime (hrs):

rat: 0.65 (slow creep)/0.18 (slow relaxation) vs 0.09 (fast creep)/0.03 (fast relaxation),

rabbit: 0.91 (slow creep)/0.38 (slow relaxation) vs 0.06 (fast creep)/0.01 (fast relaxation),

pig: 1.32 (slow creep)/0.40 (slow relaxation) vs 0.03 (fast creep)/0.01 (fast relaxation).

The relation between time constants and disc height was almost linear (R2=0.98).

We found a relation between mechanical behavior and disc size. The time constants of both the fast and the slow regimes changed with disc size. Animal discs can be used as a model for human discs under sustained loading but the results need to be corrected for the disc size. The difference between creep and stress relaxation could be attributed to the nonlinear spring constant of the disc. An increasing disc size leads to a larger time constant of the slow regime in a Kelvin-Voigt model but to a smaller time constant in the fast regime of the model.


S. Vidal Rodriguez

Lumbar disc herniation represents by far the most prevalent pathology, causing pain and sciatica and constitutes an important cause of disability and one of the most cost-intensive health problems. The aetiology is very complex. In recent years, it has been suggested in twin and family studies that genetic risk factors contribute to the development of LDH. Our purpose is to analyse genetic susceptibility to symptomatic LDH in Spanish surgical patients treated with different surgical techniques.

Single-nucleotide polymorphisms (SNPs) in VDR, GDF5, Col1A1, THBS2 and CHST were genotyped in a case-control study with 50 symptomatic LDH in Spanish surgical patients and 50 Spanish health controls. All patients provided signed informed consent. Sampling was carried out with a puncture of the pad of a finger using a sterile, single-use lancet. SNPs were determined by real-time polymerase chain reaction (PCR) using specific, unique probes with the analysis of the melting temperature of hybrids. The X2 test compared genotypes between groups. Multivariate logistic regression analysed the significance of many covariates and the incidence of LDH.

We found significant differences in age, gender and smoking status between the two groups. There were significant differences in the CC (rs2228570) genotype in VDR in patients with LDH (p<0.05). There were significant differences in the GT (rs1800012) genotype in Col1A1 in patients with LDH (p=0.001). In Col1A1, T allele was more frequent in the case group than in the control group (p<0.001). Regarding surgical techniques, of the 50 patients included in the cases group, 25 were treated with open microdiscectomy and 25 received endoscopic discectomy. Outcomes were assessed at 12 months using VAS, and NASS instrument. Postoperative pain and pain medication were significantly reduced in the endoscopic group. Patient satisfaction is greater in the endoscopic group, with shorter hospital stays and earlier return to normal activity. GT genotype in Col1A1 was more frecuent in the endoscopic group compared to the microdiscectomy group (p=0.002).

CC genotype in VDR and GT genotype in Col1A1 are associated with symptomatic LDH susceptibility in Spanish surgical patients. GT genotype in Col1A1 is associated with symptomatic LDH treated with full-endoscopic discectomy.


M. Palanca M. Marco K. Ozóg L. Cristofolini

The causes of spine disease are often biomechanical ones (e.g. disc degeneration, vertebral fracture). Currently, a deep investigation of the spine biomechanics is missing, due to the high complexity of the spine system (Fung 1980, Brandolini, Cristofolini et al. 2014): vertebrae and intervertebral discs. Recently, the Digital Image Correlation allowed measuring in vitrothe displacement and strain on the surface of soft and hard tissues, upon a specific non-invasive preparation of their surface with a speckle pattern (Palanca, Tozzi et al. 2016). The aim of this explorative work was to evaluate the deformation on spine segments, being able to distinguish between hard and soft tissue in the elastic regime and up to fracture.

Segment of four vertebrae were extracted from porcine spines. All ligaments and muscles were removed, without damaging the spine segment (vertebrae and intervertebral discs). A suitable non-conventional white-on-black speckle pattern was prepared on the surface with airbrush airgun to track the movements of the specimen with DIC (Lionello, Sirieix et al. 2014). The endplates of the extreme vertebrae were potted in poly-methyl-methacrylate. The spine segments were tested in pure axial loading with cycles of increasing magnitude, up to fialure. A commercial 3D-DIC (Dantec Dynamics, Denmark) was used. In the present configuration, it allowed a resolution of 30 micrometers. It was used to measure the displacements and strains in a full-field and contactless way on the frontal surface of the spine segments.

DIC allowed measuring with success the displacement and strain during the entire test, in the elastic regime and up to failure. The displacements and strains could be measured on the entire specimen, both in the vertebrae (hard tissue) and in the intervertebral discs (soft tissue). The axial strain evaluated prior to failure was close to 10’000 microstrain on the vertebral body surface and exceed 70’000 microstrain on the intervertebral discs, where failure was localized.

The pattern, prepared in a dedicated way showed its suitability for both the bone and the disc. The evaluated failure strains were in agreement with the literature (Bayraktar, Morgan et al. 2004) (Spera, Genovese et al. 2011). To the authors' best knowledge, this kind of measurement including strain on soft and hard tissue simultaneously has never been performed before. This work showed the capability of DIC in providing full-field measures on the surface with complex geometry, such as the spine. The assertion of these potentialities could open the way to further application of DIC to study the behaviour of human spines, including improvement of spinal fixation devices.


M. Girolami L. Babbi A. Gasbarrini G. Barbanti Brodano S. Bandiera S. Terzi R. Ghermandi S. Boriani

Spinal infections are rare diseases, whose management highlights the importance of a multidisciplinary approach. Although treatment is based on antibiotics, always selected on coltural and antibiogram tests, surgery is required in case of development of spinal instability or deformity, progressive neurological deficits, drainage of abscesses, or failure of medical treatment.

The first step of the algorithm is diagnosis, that is established on MRI with contrast, PET/CT scan, blood tests (CRP and ESR) and CT-guided needle biopsy. Evaluation of response to the specific antibiotic therapy is based on variations in Maximum Standardized Uptake Value (SUVmax) after 2 to 4 weeks of treatment. In selected cases, early minimally invasive surgery was proposed to provide immediate stability and avoid bed-rest.

From 1997 to 2014, 182 patients affected by spinal infections have been treated at the same Institution (Istituto Ortopedico Rizzoli – Bologna, Italy) according to the proposed algorithm. Mean age was 56 years (range 1 – 88). Male to female ratio was 1.46.

Minimum follow-up was 1 year. Infections were mostly located in the lumbar spine (57%) followed by thoracic (37%) and cervical spine (6%). Conservative treatment based on antibiotics needed surgery (open and/or percuteneous minimally invasive) as an adjuvant in 83 patients out of 182 (46%).

Management of spinal infections still remains a challenge in spinal surgery and a multisciplinary approach is mandatory. This algorithm represents the shared decision- making process from diagnosis to the most appropriate treatment and it led to successful outcomes with a low-complication rate.

We present this algorithm developed to organize the various professionals involved (orthopaedic surgeons, nuclear medicine and infective disease specialists, interventional radiologists and anaestesiologists) and set a shared pathway of decision making in order to uniform the management of this complex disease.


K. Khalaf M. Nikkhoo R. Kargar S. Najafzadeh

Low back pain (LBP) is the leading cause of disability worldwide, interfering with an individual's quality of life and work performance. Understanding the degeneration mechanism of the intervertebral disc (IVD), one of the key triggers of LBP, is hence of great interest. Disc degeneration can be mimicked in animal studies using the injection of enzymatic digestion, needle puncture, stab injury, or mechanical over-loading [1]. However, the detailed response of the artificial degenerated disc using needle puncture under physiological dynamic loading in diurnal activities has not yet been analyzed using FE-models. To fill the gap in literature, this study investigates the role of needle puncture injury on the biomechanical response of IVD using a combination of Finite Element (FE) simulations and in-vitro lumbar spine sheep experiments.

16 lumbar motion segments (LMS) were dissected from juvenile sheep lumbar spines. The harvested LMSs were assigned equally to two groups (control group with no incision and an injured group punctured with a 16-gauge needle). All specimens were mounted in a homemade chamber filled with saline solution and underwent a stress-relaxation test using a mechanical testing apparatus (Zwick/Roell, Ulm-Germany). A validated inverse poroelastic FE methodology [2] in conjunction with in-vitro experiments were used to find the elastic modulus and permeability. Subsequently, specimen-specific FE models for the 16 discs were simulated based on daily dynamic physiological activity (i.e., 8h rest followed by a 16h loading phase under compressive loads of 350 N and 1000 N, respectively).

The results of the individual FE models were well fitted with the in-vitro stress-relaxation experiments, with an average error of 7.48 (±2.24)%. The results of the simulations demonstrated that the variation of axial displacement in the control discs was significantly higher than the injured ones (P=0.037). At the end of day, the intradiscal pressure (IDP) was slightly higher in the control group (P=0.061) although the maximum axial stress in the annulus fibrosus (AF) was significantly higher in the injured group (P=0.028). The total fluid loss after 24h was significantly higher in the control group (p<0.001).

We found that needle puncture can decrease the strain range, IDP, and fluid loss in an IVD, although it increases the axial stress. We therefore hypothesize that the fissures, clefts or tears produced by needle puncture alter the saturation time for disc deformation and pore pressure. The collapsed disc structure hinders the fluid flow capability; hence, the total fluid loss decreases for the injured discs, inhibiting the transportation of nutrients. Higher stresses in the AF were observed for the injured group in alignment with previous studies [3]. It is therefore concluded that the needle puncture injury methodology can be effectively used to mimic the degeneration mechanism in animal models. It is a convenient, reproducible, and cost-effective technique. Future work includes exploring degenerated disks induced by needle puncture to investigate potential regenerative therapeutics.


P.D. Parchi L. Andreani G. Evangelisti M. Carbone S. Condino V. Ferrari M. Lisanti

Pedicle screws fixation to stabilize lumbar spinal fusion has become the gold standard for posterior stabilization. However their positioning remain difficult due to variation in anatomical shape, dimensions and orientation, which can determine the inefficacy of treatment or severe damages to close neurologic structures. Image guided navigation allows to drastically decrease errors in screw placement but it is used only by few surgeons due to its cost and troubles related to its using, like the need of a localizer in the surgical scenario and the need of a registration procedure. An alternative image guided approach, less expensive and less complex, is the using of patient specific templates similar to the ones used for dental implants or knee prosthesis.

Like proposed by other authors we decided to design the templates using CT scans. (slice thickness of 2.0 mm). Template developing is done, for each vertebra, using a modified version of ITK-SNAP 1.5 segmentation software, which allow to insert cylinders (full or empty) in the segmented images. At first we segment the spine bone and then the surgeon chose screw axes using the same software. We design each template with two hollow cylinders aligned with the axes, to guide the insertion in the pedicle, adding contact points that fit on the vertebra, to obtain a template right positioning. Finally we realize the templates in ABS using rapid prototyping. After same in-vitro tests, using a synthetic spine (by Sawbones), we studied a solution to guarantee template stability with simple positioning and minimizing intervention invasiveness. Preliminary ex-vivo animal testing on porcine specimens has been conducted to evaluate template performance in presence of soft-tissue in place, simulating dissection and vertebra exposure. For verification, the surgeon examined post-operative CT-scans to evaluate Kirschner wires positioning.

During the ex-vivo animal test sessions, template alignment resulted easy thanks to the spinous process contact point. Their insertion required no additional tissue removal respect to the traditional approach. The positioning of contact points on vertebra's lamina and articular processes required just to shift the soft tissue under the cylinders bases. The surgeon in some cases evaluated false stable template positions since not each of the 4 contact points were actually in contact with the bone surface and tried the right position. CT evaluation demonstrate a positive results in 96.5% of the Kirschner wires implanted.

Our approach allows to obtain patient specific templates that does not require the complete removal of soft tissue around vertebra. Guide positioning is facilitated thanks to the using of the spinous processes contact point, while false stable positions can be avoided using four redundant contact points. The templates can be used to guide the drill, the insertion of Kirschner in case of use of cannulated screws or to guide directly the screw. After these preliminary ex-vivo animal tests we obtained the authorization of the Italian Health Ministry to start the human study.


M. Sakane T. Tsukanishi T. Funayama S. Onishi E. Ozeki I. Hara M. Yamazaki

Photodynamic therapy (PDT) uses the strong cytotoxicity of singlet oxygen and hyperthermia produced by irradiating excitation light on a photosensitizer. The phototoxic effects of indocyanine green (ICG) and near-infrared light (NIR) have been studied in different types of cancer cells. Plasma proteins bind strongly to ICG, followed by rapid clearance by the liver, resulting in no tumor-selective accumulation after systemic administration. Kimura et al. have proposed using a novel nanoparticle labeled with ICG (ICG-lactosome) that has tumor selective accumulation owing to enhanced permeability and retention (EPR) effect. In this study, we investigated the efficacy of PDT using ICG-lactosome and NIR for a bone metastatic mouse model of breast cancer.

Cells from the human breast cancer cell line, MDA-MB-231 were injected into the right tibia of 26 anesthetized BALB/C nu/nu mice at a concentration. The mice were then randomly divided into three groups: the PDT group (n = 9), the laser (laser irradiation only) group (n = 9), and the control group (n = 8). PDT was performed thrice (7, 21, 35 days after cell inoculation) following ICG-lactosome administration via the tail vein 24 hours before irradiation. The mice were percutaneously irradiated with an 810-nm medical diode laser for 10 min. In the laser group, mice were irradiated following saline administration 24 hours before irradiation. Radiographic analysis was performed for 49 days after cell inoculation. The area of osteolytic lesion was quantified. The right hind legs of 3 mice were amputated 24 hours after the third treatment. Histological analysis was performed using hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining of sagittal sections. The data was analyzed using Tukey-Kramer post-hoc test. P-value of <0.05 was considered significant.

X-ray on day 49 of the three groups are considered. The area of osteolytic lesion in the PDT group (7.9 ± 1.2 mm2: mean ± SD) was significantly smaller than that of the control (11.4 ± 1.4 mm2) and laser (11.9 ± 1.2 mm2) groups. In histological findings, we observed many TUNEL-positive cells in the metastatic tissue 24 hours after PDT. In the control and laser groups, TUNEL-positive cells were occasionally observed.

We have previously reported the effect of ICG-lactosome-enhanced PDT on the cytotoxicity of human breast cancer cells in vitroand on the delay of paralysis in a rat spinal metastasis model. In this study, we demonstrated the inhibitory effect of ICG-lactosome-enhanced PDT on bone destruction caused by human breast cancer cells in vivo. This PDT induced apoptosis and necrosis in the tumor cells. Intralesional resection is often performed for spinal metastases in an emergency. The residual tumor may regrow and cause neurological deficits. We believe that ICG-lactosome-enhanced PDT can decrease the rate of local recurrence through reduction of the residual tumor. PDT with ICG-lactosome and NIR had an inhibitory effect on the growth of bone metastasis of a human breast cancer.


D. Anitha K. Subburaj J.S. Kirschke T. Baum

Multiple myeloma (MM) is a chronic, malignant B-cell disorder, with a less than 50% 5-year survival rate [1]. This disease is responsible for vertebral compression fractures (VCFs) in 34 to 64% of diagnosed patients [1], and at least 80% of MM patients experience pathological fractures [3]. Even though reduced DXA-derived bone mineral density (BMD) has been observed in MM patients with vertebral fractures [4], the current quantitative standard method is insufficient in MM due to the osteo-destructive bone changes. Finite-element (FE) analysis is a computational and non-destructive modeling and testing approach to determine bone strength using 3D bone models from CT images. Thus, this study aimed to assess the differences in FE-predicted critical fracture load in MM patients with and without VCFs in the thoracic and lumbar segments of the spine.

Multi-detector CT (MDCT) images of two radiologically assessed MM patients (1 with VCFs and 1 without VCFs) were used to generate three-dimensional (3D) models of the whole spine. For each subject, the thoracic segments, 1 to 12 (T1-T12) and lumbar segments, 1 to 5 (L1-L5) were segmented and meshed. Heterogeneous, non-linear anisotropic material properties were applied by discretizing each vertebral segment into 10 distinct sets of materials. A compressive load was simulated by constraining the surface nodes on the inferior endplate in all directions, and a displacement load was applied on the surface nods on the superior endplate [2]. This analysis was performed using ABAQUS version 6.10 (Hibbitt, Karlsson, and Sorensen, Inc., Pawtucket, RI, USA).

The MM subject with VCFs had originally experienced fractures in the T4, T5, T12, L1, and L5 segments whereas the MM subject without VCFs experienced none. The former displayed large and abrupt differences in fracture loads between adjacent vertebrae segments, unlike the latter, which exhibited progressive differences instead (no abrupt changes between adjacent vertebrae segments observed).

Results from this preliminary study suggest that segments at high risk of fracture are collectively involved in an unstable network, which place the vertebral segments with high values of fracture loads (peaks) as well as the adjacent segments at risk of VCF. For instance, the high fracture load at T11 places T10, T11 and T12 at risk of fracture. Accordingly, T12 has already fractured, and T10 and T11 remain at risk. The relative changes between adjacent vertebrae segments that indicate instability (extremely high fracture load values) enables ease of identification of segments at high fracture risk. Clinicians would be able to work with pre-emptive treatment strategies in future as they can focus on more targeted therapy options at the high-risk vertebrae segments [3].


A. Gasbarrini S. Bandiera G. Barbanti Brodano S. Terzi R. Ghermandi M. Cheherassan L. Babbi M. Girolami S. Boriani

In case of spine tumors, when en bloc vertebral column resection (VCR) is indicated and feasible, the segmental defect should be reconstructed in order to obtain an immediate stability and stimulate a solid fusion. The aim of this study is to share our experience on patients who underwent spinal tumor en bloc VCR and reconstruction consecutively.

En bloc VCR and reconstruction was performed in 138 patients. Oncological and surgical staging were performed for all patients using Enneking and Weinstein-Boriani-Biagini systems accordingly. Following en bloc VCR of one or more vertebral bodies, a 360° reconstruction was made by applying posterior instrumentation and anterior implant insertion. Modular carbon fiber implants were applied in 111 patients, titanium mesh cage implants in 21 patients and titanium expandable cages in 3 patients; very recently in 3 cases we started to use custom made titanium implants. The latter were prepared according to preoperative planning of en bloc VCR based on CT-scan of the patient, using three dimensional printer.

The use of modular carbon fiber implant has not leaded to any mechanical complications in the short and long term follow-up. In addition, due to radiolucent nature of this implant and less artifact production on CT and MRI, tumor relapse may be diagnosed and addressed earlier in compare with other implants, which has a paramount importance in these group of patients. We did not observe any implant failure using titanium cages. However, tumor relapse identification may be delayed due to metal artifacts on imaging modalities.

Custom- made implants are economically more affordable and may be a good alternative choice for modular carbon fiber implants. The biocompatibility of the titanium make it a good choice for reconstruction of the defect when combined with bone graft allograft or autograft. Custom made cages theoretically can reproduce patients own biomechanics but should be studied with longer follow-up.


M. Colombo F. Baccianti L. Cantone A. Moschini N. Platonova S. Garavelli S. Galletti V. Bollati C. Goodyear A. Neri R. Chiaramonte

Multiple myeloma (MM) is an incurable hematological tumor stemming from malignant plasma cells. MM cells accumulate in the bone marrow (BM) and shape the BM niche by establishing complex interactions with normal BM cells, boosting osteoclasts (OCLs) differentiation and causing bone disease. This unbalance in bone resorption promotes tumor survival and the development of drug resistance.

The communication between tumor cells and stromal cells may be mediated by: 1) direct cell-cell contact; 2) secretion of soluble factors, i.e. chemokines and growth factors; 3) release of extracellular vesicles/exosomes (EVs) which are able to deliver mRNAs, miRNAs, proteins and metabolites in different body district.

Primary CD138+ MM cells were isolated from patients BM aspirates. MM cell lines were cultured alone in complete RPMI-1640 medium or co-cultured with murine (NIH3T3) or human (HS5) BMSC cell lines or murine Raw264.7 monocytes in DMEM medium supplemented with 10% V/V FBS. Silencing of Jagged1 and Jagged2 was obtained by transient expression of specific siRNAs or by lentiviral transduction using a Dox-inducible system (pTRIPZ). EVs were isolated using differential ultracentrifugation. EVs concentration and size were analyzed using Nano Track Analysis (NTA) system. The uptake of PKH26-labelled MM-derived EVs by HS5 or Raw264.7 was measured after 48 hours by confocal microscopy and flow cytometry. Osteoclast (OCL) differentiation of Raw264.7 cells was induced by 50ng/ml mRANKL, co-culturing with MM cells, CM or EVs. OCLs were stained by TRAP Kit and counted. Bone resorption was assessed by Osteo Assay Surface plates. Flow cytometric detection of apoptotic cells was performed after staining with Annexin V. Gene expression was analyzed by qRT-PCR, while protein levels were determined using flow cytometry ELISA or WB.

Notch oncogenic signaling is dysregulated in several hematological and solid malignancies. Notch receptors and ligands are key players in the crosstalk between tumor cells and BM cells. We have demonstrated that: 1) the dysregulated Jagged ligands on MM cells trigger the activation of Notch receptors in the nearby stromal cells by cell-cell contact. This results in the release of anti-apoptotic and growth stimulating factors, i.e. IL6 and SDF1; 2) MM cells promote the development of bone lesions boosting osteoclast differentiation by secreting soluble factors (i.e. RANKL) and by the activation of Notch signaling mediated by direct contact with osteoclast precursors; 3) Finally, we present evidences that EVs play a crucial role in the dysregulated interactions of MM cells with the microenvironment and that Notch signaling regulates their release and participate in this cross-talk.

These evidences supports the hypothesis that Jagged targeting on MM cells may interrupt the communication between tumor cells and the surrounding milieu, blocking the activation of the oncogenic Notch pathway and finally resulting in the a reduction of MM-associated bone disease and drug resistance.