Receive monthly Table of Contents alerts from Orthopaedic Proceedings
Comprehensive article alerts can be set up and managed through your account settings
View my account settingsA secure taper connection in shoulder arthroplasty is mandatory to avoid loosening and fretting. This study's objective was to determine the amount of
Methods
Impaction data was collected from experienced shoulder surgeons (n=5) during a cadaver lab. Testing groups (n=5 each) were: 1)
The
Statistics and data analysis were performed in MATLAB (2014b, Mathworks, Natick, MA, α=0.05). Two-tailed, pearson's linear correlation coefficients are reported. Group differences were determined using Kruskal Wallis test. Pair-wise comparisons were performed using a Tukey correction.
Results
Extremely high and variable impaction forces were measured (Table 1, Figure 2). The maximum force was nearly 27 kN; however, that value reduced to ∼18kN when the data from an outlier surgeon was removed. Maximum impaction forces were 12.45±4.36 kN, and the average was 10.47±3.63 kN. The pulloff force ranged from 0.94 kN to 5.54 kN with an average of 2.76±1.19 kN. Higher impaction forces required higher pulloff forces to disengage the taper connection (p<0.001, R>−0.608).
Ceramic humeral heads showed a 24% higher fixation strength (p=0.004) under similar engagement conditions (p=0.18) in comparison to metal components.
Head size does not appear to influence either the magnitude of the impaction force surgeons use (p>0.20) nor the force needed to disengage the taper (p=0.25).
The surgeon performing the insertion had a significant influence on the impaction strike timing (p<0.001), number of strikes (p<0.001), and the impaction forces (p<0.03) and the pulloff force (p<0.001).
Introduction
Wear and survival of total joint replacements do not depend on the duration of the implant in situ, but rather on the amount of its use, i.e. the patient's activity level [1]. With this in mind, the present study was driven by two questions: (1) How does total knee replacement (TKR) respond to the simulation of daily highly demanding activities? (2) How does implant size affect wear response of total knee replacement (TKR)?
Materials & Methods
Two sets of the same total knee prosthesis (TKP), different in size (#2 and #6), equal in design, were tested on a three-plus-one knee joint simulator for two million cycles using a highly demanding daily load waveform [2], replicating a stair-climbing movement. The results were compared with two sets of TKP previously tested with the ISO level walking task. Gravimetric and micro-Raman spectroscopic analyses were carried out on the polyethylene inserts. Visual comparison with in vivo explants was carried out and digital microscopy was used to characterize the superficial structure of all the TKPs and explanted components.
Introduction
Total knee arthroplasty (TKA) is a consolidated orthopaedic procedure and success of such operation depends on the prosthetic design [1]. Unfortunately, as there is a good survival rate of primary TKA, failures occur for factors concerning the polyethylene composition of the implants, secondary osteolysis, and ultimately loosening of the implants are the usual causes of failure after normal use [2]. Dynamic
Materials & Methods
Four commercial posterior-stabilized fixed-bearing component prosthesis for TKA were tested in this study (Stryker®-Orthopaedics, Mahwah, NJ-USA). These were new and delivered in sterilized packages. Particularly, corresponding UHMWPE tibial inserts (size #7) were made of conventional surgical grade polyethylene resin (GURâ�¨1020), consolidated by compression moulding (accordingly to ISO 5834/1-2), and EtO sterilized. These were tested in conjunction with corresponding CoCrMo alloy femoral components.
For the implementation of realistic loading scenarios during in vitro wear testing for human joint prostheses, an in vitro protocol was designed to simulate the flexion/extension angle, intra/extra rotation angle, and antero/posterior translation. These movements were obtained in patients by three- dimensional video-fluoroscopy. Axial load data were collected by gait analysis [3].
Introduction
To meet the demands of younger more active patients more robust pre-clinical wear testing methods are required, in order to simulate a wider range of activities. A new electromechanical simulator (Simulation Solutions, UK) with a greater range of motion, a driven abduction/adduction axis and improved input kinematic following has been developed to meet these requirements, as well as requirements of the relevant international standards. This study investigated the wear of a fixed bearing total knee replacement using this new electromechanical knee simulator, comparing with previous data from a pneumatic simulator.
Materials/Methods
The wear of six Sigma CR fixed bearing TKRs (DePuy, UK) with curved moderately cross-linked polyethylene inserts (XLK) was determined in pneumatic and electromechanical Prosim knee simulators (Simulation Solutions, UK). Standard gait displacement controlled kinematics were used, with a maximum anterior-posterior displacement of either 10mm (high) or 5mm (intermediate) [1]. The output profiles from the simulators were obtained and compared to the demand input profiles. The lubricant used was 25% new-born calf serum and wear determined gravimetrically. Statistical analysis was performed using the one-way ANOVA with 95% confidence interval and significance was taken at p<0.05.
Background
The femoral head center shift on reduction time in total hip arthroplasty (THA) causes alteration of the muscle tension around the hip joint. Many studies about the shift of the femoral head in the cranio-caudal direction or medio-lateral direction on coronal plane have been reported. It has been known widely that the shift on these directions influence tension of the abductor muscle around the hip joint. Nevertheless few studies about the three-dimensional shift including the antero-posterior direction have been reported.
Purpose
The purpose of this study is to evaluate the three-dimensional shift of the femoral head center in THA using three-dimensional THA templating software.
Introduction
The systematic effects of joint replacement in rheumatoid arthritis (RA) patients are that inflamed synovium and pathological articular cartilage has dissipated. Expectations of total knee arthroplasty (TKA) are reduction of inflammatory cytokines, decreased disease activity and improvement of drug efficacy and ADL. Remission of rheumatoid arthritis is defined as having a Disease Activity Score DAS28 (ESR) of less than 2.6 and Health Assessment Questionnaire (HAQ) – Disability Index, less than 0.5.
Purpose
We investigated whether TKA could reduce disease activity and improve ADL, and subsequent remission levels of DAS and HAQ or not.
In a society whereby the incidence of obesity is increasing and medico-legal implications of treatment failure are more frequently ending with the consulting doctor, clarity is required as to any restrictions placed on common orthopaedic implants by manufacturing companies. The aim of this study was to identify any restrictions placed on the commonly used femoral stem implants in total hip replacement (THR) surgery, by the manufacturers, based on patient weight. The United Kingdom (UK) National Joint Registry (NJR) was used to identify the five most commonly used cemented and uncemented femoral stem implants during 2012. The manufacturing companies responsible for these implants were asked to provide details of any weight restrictions placed on these implants. The Corail size 6 stem is the only implant to have a weight restriction (60Kg). All other stems, both cemented and uncemented, were free of any restrictions. Fatigue fracture of the femoral stem has been well documented in the literature, particularly involving the high nitrogen stainless steel cemented femoral stems and to a lesser extent the cemented cobalt chrome and uncemented femoral stems. In all cases excessive patient weight leading to increased cantilever bending of the femoral stem was thought to be a major factor contributing to the failure mechanism. From the current literature there is clearly an association between excessive patient weight and fatigue failure of the femoral stem. We suggest avoiding, where possible, the insertion of small stems (particularly cemented stems) and large offset stems (particularly those with a modular neck) in overweight patients.
Introduction
Stress shielding and wear induced aseptic loosening cause failure in total joint arthroplasty. To improve long-term outcomes in total knee arthroplasty (TKA), the use of a low modulus, low wearing biomaterial may be a suitable alternative to cobalt chromium (CoCr) femoral components. Based on its favorable mechanical properties and observed clinical success especially in spinal surgery, polyetheretherketone (PEEK) is investigated as a candidate material for a metal free TKA. An all polymer TKA has several theoretical advantages, these include a more physiological stress in the distal femur, elimination of biological reaction to metal, better radiographic visualisation of the bone implant interface especially with CT and MRI. In addition, polymers afford a cheaper option for the manufacture of prostheses.
Aims and Hypothesis
This study investigated the wear performance of PEEK and carbon reinforced PEEK (CFR-PEEK) as bearing materials in an all polymer TKA using a unidirectional pin on plate test. Our hypothesis was that reduced wear is generated from PEEK or CFR-PEEK bearings when compared with metal on polyethylene (MoP) bearings and that this combination may provide a suitable alternative in TKA.
INTRODUCTION
There is ongoing debate about the possible advantages of unicompartmental (UNI) knee replacement versus total knee replacement (TKR), such as for young, active patients. The purpose of this study was to investigate functional, radiographic, and device survivorship outcomes of UNI knee replacement with a newer generation UNI through 2-years post-op.
METHODS
A retrospective review of 188 cemented, fixed bearing unicompartmental (UNI) knee replacements implanted between January 2009 and June 2012 at 3 centers. The purpose of this study was to evaluate the survivorship, reasons for revision, radiographic and clinical results. A chart review was performed to collect demographics, operative details, American Knee Society (AKS) scores and adverse events (AE) through 2-years post-op. Kaplan-Meier (KM) device survivorship rates for the partial knee construct were estimated for post-op years in which at least 40 subjects had later follow-up. The definition of revision was the removal of any component for any reason, and device survivorship was the lack of revision. The time variable was the time to revision if the knee had been revised, or the time to last clinical follow-up or death if the knee had not been revised.
The average follow-up was 2.03 years (SD=0.4). The mean age was 64 years (SD=10.5), 56% of the patients were 65 years or younger, mean BMI was 27.5 kg/m2 (SD=4.9), 60% of patients were women, and 89% had a diagnosis of OA (9.6% had AVN). Data were collected through April 2015.
Background
Polyetheretherketone (PEEK) may be advantageous as an alternative material to metal alloys in some orthopaedic applications. However, it is bioinert and does not osseointegrate1. A novel accelerated neutral atom beam technique (ANAB) has been developed to improve the bioactivity of PEEK where the surface is modified to a depth of 5 nm without affecting the integrity of the underlying PEEK structure2.
Aim
The aim of this study was to investigate the growth of human Mesenchymal Stem Cells (hMSCs), adult human Osteoblasts (hOB) and skin Fibroblasts (BR3G) on PEEK and ANAB treated PEEK.
In this study, we attempt to explore the differences between anatomical and non-anatomical tibial baseplates in terms of rotation and coverage. To achieve this, we divided 80 dry bones into groups, and examined them using anatomical and non-anatomical baseplates. The results of the study showed that anatomical baseplates provided better coverage and also yielded better results according to the rotational assessment.
Surgeons make rotational mistakes by non-anatomic base plates, when trying to achieve best coverage. Anatomic base plates warrant better coverage according to non-anatomic base plates when both are placed at the same rotational axis. It is more possible to adjust size and rotation correctly with the anatomic tibial components.
Introduction
Primary stability is essential for long-term performance of cementless femoral components. There is debate as to whether collars contribute to primary stability. The results from experimental studies and finite element (FE) analysis have been variable and contradictory. Subtle differences in performance are often swamped by variation between cadaveric specimens in vitro, whereas FE studies tend to be performed on a single femur. However, FE studies have the potential to make comparisons of implant designs within the same cohort of femurs, allowing for subtle performance differences to be identified if present. This study investigates the effect of a collar on primary stability of a femoral prosthesis across a representative cohort of femurs.
Materials and Methods
FE models were generated from QCT scans of eight cadaveric femurs taken from the Melbourne Femur Collection (4 male and 4 female; BMI: 18.7 – 36.8 kg.m-2; age: 59 – 80 years) which were of joint replacement age. Heterogeneous bone material properties were assigned based on the CT greyscale information. Each femur was implanted with the collared and collarless version of Corail femoral stem (DePuy, Leeds, United Kingdom). The stems were sized and positioned so that the prosthesis filled the medullary canal with minimal gap between the prosthesis and the inner boundary of the cortical bone. The peak muscle and joint contact forces associated with level gait were applied and the distal femur was rigidly fixed. The forces were scaled based on the body weight for each subject. Micromotion, as well as microstrains at the bone-prosthesis interface were measured for each subject. Paired t-test was run to compare the micromotion and the microstrains measured for the collared and collarless prosthesis.
Background
Cement restrictors are used for maintaining good filling and pressurization of bone cement during hip and knee arthroplasties. The limitations of certain cement restrictors include the inability to accommodate for large medullary canals particularly in revision procedures. We describe a technique using SurgicelTM (Johnson & Johnson) and SPONGOSTAN™ (Johnson & Johnson) (Fig 1) to form a cement restrictor that can accommodate for large canal diameters and provide excellent pressurisation.
Technique
The technique involves the application of SPONGOSTAN™ (Johnson & Johnson) foam onto a SurgicelTM (Johnson & Johnson) mesh which is then rolled onto the SPONGOSTAN™ foam forming a uniform cylindrical structure Figs 2,3. The diameter of the restrictor can be adjusted according to the desired femoral canal diameter through increasing the thickness of the SPONGOSTAN™ (Johnson & Johnson) foam. The restrictor is then inserted into the desired position in the medullary canal where it expands uniformly creating an effective restrictor and bone plug Fig 4. Bone cement is then applied and pressurisation commenced prior to the insertion of the implant Fig5.
SPONGOSTAN™ is an absorbable haemostatic sponge intended for haemostatic use by applying to a bleeding surface. It consists of a sterile, water-insoluble, malleable, porcine gelatin absorbable sponge.
Surgicel ™ is an absorbable hemostatic agent composed of oxidized regenerated cellulose. It is a sterile, absorbable knitted fabric that is flexible and adheres readily to bleeding surfaces. Both products are routinely used for their haemostatic properties in various surgical disciplines.
Purpose
The minimally invasive surgery (MIS) approach has been popularised as an alternative to the standard open approach in acute Achilles tendon ruptures. Advocates of this technique suggest earlier functional recovery, due to less injury to the surrounding tissues. However, the critics argue that due to the reduced exposure risk and complications of such surgery are higher in comparison to the open technique.
Methods
A systematic review and meta-analysis of randomised and prospective studies were conducted to compare the MIS and open surgery in acute Achilles tendon ruptures.
Introduction
Translational surgical mismatch in the centres of rotation of the femoral head and acetabular cup in hip joint replacements can lead to dynamic microseparation resulting in edge loading contact [1]. Increased wear in retrieved ceramic-on-ceramic bearings has been associated with edge loading [2]. Hip joint simulators were used to replicate increased wear rate, stripe wear and bimodal wear debris size distribution, as seen clinically [3,4]. Recently developed electromechanical simulators are able to comply with the latest international standards, which include three axes of rotation conditions [5]. Previous simulators had applied two axes of rotation under microseparation conditions [6]. Therefore, the aim of this study was to compare the wear of ceramic-on-ceramic bearings obtained under edge loading due to microseparation conditions during gait using the same electromechanical hip joint simulator with two axes of rotation and three axes of rotation conditions.
Materials and Methods
A six-station electromechanical hip joint simulator (ProSim EM13, Simulation Solutions, UK) was set up with 36mm diameter ceramic-on-ceramic (BIOLOX® delta, PINNACLE®, DePuy Synthes, UK) hip replacements. The wear was determined for two million cycles under standard conditions with two axes of rotation conditions (n=6), two million cycles under microseparation conditions with two axes of rotation conditions (n=6) (Figure 1a), and two million cycles under microseparation conditions with three axes of rotation conditions (n=6) (Figure 1b). The loading profiles [5,7] comprised of 3kN twin peak loads and 300N swing phase load under standard conditions. The swing phase load was reduced to approximately 70N under microseparation conditions. Approximately 0.5mm of dynamic microseparation between the head and the cup was applied in the medial/lateral direction. The components were lubricated with 25% new-born calf serum supplemented with 0.03% sodium azide to minimise bacterial growth. The gravimetric wear rates were compared over two million cycles for each test (XP205, Mettler Toledo, UK). The mean wear rates of the head and cup were calculated with 95% confidence limits and statistical analysis was carried out (t-test) with significance levels taken at p<0.05. A coordinate-measurement machine (Legex 322, Mitutoyo, UK) was used to construct a three-dimensional map of the femoral head surface wear.
In shoulder arthroplasty, humeral resurfacing or short stem devices rely on the proximal humeral bone for fixation and load transfer. For resurfacing designs, the fixation takes place above the anatomical neck, whilst for short stem designs the resection is made at the anatomical neck and fixation is achieved in the bone distal to that resection. The aim of the study is to investigate the bone density in these proximal areas to provide information for implant design and guidance on appropriate positions to place implant fixation entities.
CT scans of healthy humeri were used to map bone density distribution in the humeral head. CT scans were manually segmented and a solid model of the proximal humerus was discretised into 1mm tetrahedral elements. Each element centroid was then assigned an apparent bone density based on CT scan Grey values. Matlab was used to sort data in spatial groups according to element centroid position to map bone density distribution. The humeral head was divided into twenty 2mm thick slices parallel to the humeral neck starting from the most proximal region of the humeral head to distal regions beneath epiphyseal plate (Fig 1a). Each slice was then radially divided into 30 concentric circles and each circle was angularly divided into 12 regions (Fig 1b). The bone density for each of these regions was calculated by averaging density values of element centroid residing in each region.
Average bone density in each slice indicates that bone density decreases from proximal region to distal regions below the epiphyseal plate and higher bone density was measured proximal to the anatomical neck of the humerus (Fig2). Figure 3 shows that, both above and below the anatomical neck, bone density increases from central to peripheral regions where eventually cortical bone occupies the space. This trend is more pronounced in regions below the anatomical neck and above the epiphyseal plate. In distal slices below the anatomical neck, a higher bone density distribution in inferior (calcar) regions was also observed.
Current generation short stem designs require a resection at the anatomical neck of the humerus and a cruciform keel to fix the implant in the distal bone. In the example in Figure 3, the anatomical neck resection corresponds to the 18 mm slice, with the central cruciform keel engaging between slices 18 mm and 27 mm. The data indicates that this keel should make use of the denser bone by the calcar for fixation, suggesting a crucifix orientation as highlighted in Figure 3. The current generation of proximally fixed humeral components are less invasive than conventional long-stemmed designs, but the disadvantage is that they must achieve fixation over a smaller surface area and with a less advantageous lever arm down the shaft of the humerus. By presenting a spatial density map of the proximal humerus, the current study may help improve fixation of proximally fixed designs, with a simple modification of implant rotational orientation to make use of the denser bone in the calcar region for fixation and load transfer.
Accurate comparison of outcomes regarding various surgical options in knee arthroplasty calls for an improved method of joint line analysis that takes into account the preoperative cartilage thickness. Current methods for measuring joint lines have limitations. This is commonly done on anteroposterior or lateral radiographs, by measuring landmarks defining the joint line with reference to a common landmark such as the fibular head, the medial femoral epicondyle or the tibial tuberosity. These radiographic methods are unable to measure important differences between the medial and lateral joint lines. Furthermore, poor accuracies due to sensitivity to patient and X-ray beam positions have been reported for these methods. The aim of this study was to introduce a method to measure the joint line shift for any desired flexion angle of the joint by taking into account the cartilage thickness on both the medial and lateral sides and under weightbearing conditions.
The suggested method inludes four steps (Figure 1): a) preoperative joint imaging and 3D-2D matching between pre-operative 3D models and bi-planar 2D images; b) postoperative joint imaging and 3D-2D matching between implant 3D models and 3D models of the bones to bi-planar 2D images; c) superimposition of the locations of the implant components on the preoperative joint positions to determine changes in the joint line on the medial and lateral sides of the joint for both extension and flexion positions.
To determine the tibial joint line, the three-dimensional model of the polyethylene inlay was added to the metal tray according to the design of its locking mechanism. Two-dimensional cross-sectional slices of the combined bone and implant models were obtained perpendicular to the tibial tray and passed through the most distal points of the medial and lateral condyles of the femoral component. Joint line shift was measured as the distance between the most distal point on the condyle of the femoral component and the most proximal point on the articular surface of the tibial polyethylene in the direction normal to the mediolateral edge of the tibial tray in the cross-sectional slice.
The method was tested on six cadaveric specimens. The joint line shift, measured using the new method, was in the range of −0.2 to 1.3 mm on average (SD=1.3 to 3.8 mm for medial and lateral, flexion and extension). This was significantly different (p≤0.01) from the results of a previously
Avascular necrosis of the femoral head (AVN) is associated with collapse of the femoral head and arthritic degeneration of the joint. The combination of an implant inserted into the femoral head that provides mechanical support and bone grafting to promote bone formation may offer a possible joint-preserving solution1. Seventeen such procedures were performed between November 2012 and March 2014 during an IRB approved clinical trial. Thirteen out of 18 patients remained unrevised at a minimum of 12 months; the results of radiographic and histological analysis of four revisions are presented.
The investigational device (Figure 1) was developed as a joint preserving treatment for AVN with a clinical grade of IIC or less according to the ARCO grading system2.
The device consisted of a braided spherical Nitinol cage with a Titanium / Nitinol orientation feature. It was implanted using fluoroscopic navigation into a spherical cavity cut into the femoral head via an 11mm diameter access tunnel. Once deployed, the implant was filled with a lightly impacted mixture of autologous bone graft and bone marrow soaked Conduit TCP (DePuy CMW, Blackpool, UK). The implant's purpose was to provide mechanical support to the weakened subchondral surface while the bone graft mixture re-integrated with the host bone.
The retrieved femoral heads were trimmed to leave approximately 3mm of bone around the implant, dehydrated, embedded in methacrylate resin, sectioned and thinned into 50–70µm coronal slices for histological analysis. The following observations were made (Figure 2):
Case 1 (Female, age 70, ARCO IIB, revised after 2 days): The patient was revised for spontaneous sub-trochanteric fracture secondary to osteoporosis. Contact between the native bone and bone graft was observed. Marrow elements and repair tissue were visible within the pores in the graft (Figure 2a).
Case 2 (Male, age 67, ARCO IIIC, revised after 82 days): Two wires were broken but retained within the braided structure. A radiolucent gap caused by the presence of fibrous tissue between the graft mixture and native bone was evident suggesting that the implant was unable to prevent progression in this case.
Case 3 (Female, age 70, ARCO IIC, revised after 482 days): The cavity penetrated the subchondral surface; at revision the implant was found to have breached the articular cartilage. There was partial separation of the proximal osteonecrotic fragment and no evidence of graft revascularisation or remodelling within the implant.
Case 4 (Male, age 42, ARCO IIC, revised after 469 days): There was no indication of bone graft re-integration. Collapse of the necrotic bone and deformation of the implant was diagnosed from 1 year follow-up x-rays.
Conclusion
This treatment has preserved the joints of fourteen patients. Of the four revised, two patients had clinical grades or bone quality contra-indicated for the device and three had lesions occupying more than 30% of the femoral head: Improved criteria for patient selection may be required. The device is only partially load-bearing and incapable of stabilising fractures: The radiolucent band associated with fibrous tissue formation may be an early indication of failure.
Introduction
Total knee arthroplasty (TKA) can effectively treat end-stage knee osteoarthritis. For cruciate-retaining (CR) TKA, the posterior tibial slope (PTS) of the reconstructed proximal tibia plays a significant role in restoring normal knee kinematics as it directly affects the tension of the posterior cruciate ligament (PCL) [1]. However, conventional cadaveric testing of the impact of PTS on knee kinematics may damage/stretch the PCL, therefore impact the test reproducibility. The purpose of this study was to assess the reproducibility of a novel method for the evaluation of the effects of PTS on knee kinematics.
Materials and Methods
Cemented CR TKAs (Logic CR, Exactech, Gainesville, FL, USA) were performed using a computer-assisted surgical guidance system (ExactechGPS®, Blue-Ortho, Grenoble, FR) on six fresh frozen non-arthritic knees (PCL presumably intact). The tibial baseplate was specially designed (Fig. 1) with a mechanism to modify the PTS in-situ. Knee kinematics, including anteroposterior (AP) translation, internal/external (IE) rotation, and hip-knee-ankle angles, were evaluated by performing a passive range of motion from extension up to ∼110° of flexion, three separate times at 5 PTSs: 10°, 7°, 4°, 1°, and then 10° again. The repeatability of the test was investigated by comparing the kinematics between the first and the last 10° tests. Any clinically relevant deviation (1.5° for the hip knee ankle angle, 1.5mm for anterior-posterior translation and 3° for internal-external rotation) would reflect damage to the soft-tissue envelope or the PCL during the evaluation. Potential damage of PCL was investigated by comparing the kinematic parameters from the first and last 10° slope tests at selected flexion angles (Table 1) by paired t-test, with statistical significance defined as p<0.05.
INTRODUCTION
Cemented total knee arthroplasty (TKA) is a widely accepted treatment for end-stage knee osteoarthritis. During this procedure, the surgeon targets proper alignment of the leg and balanced flexion/extension gaps. However, the cement layer may impact the placement of the component, leading to changes in the mechanical alignment and gap size. The goal of the study was to assess the impact of cement layer on the tibial mechanical alignment and joint gap during cemented TKA.
MATERIAL
Computer-assisted TKAs (ExactechGPS®, Blue-Ortho, Grenoble, FR) were performed by two fellowship trained orthorpaedic surgeons on five fresh-frozen non-arthritic pelvis-to-ankle cadaver legs. All the surgeries used a cemented cruciate retaining system (Optetrak Logic CR, Exactech, Gainesville, FL). After the bony resection, the proximal tibial resection plane was acquired by manually pressing an instrumented checker onto the resected tibial surface (resection plane). Once the prosthesis was implanted through standard cementing techniques, the top surface of the implanted tibial component was probed and recorded using an instrumented probe. A best fit plane was then calculated from the probed points and offset by the thickness of the prosthesis, representing the bottom plane of the component (component plane).
The deviation of component alignment caused by the cement layer was calculated as the coronal and sagittal projection of the three-dimensional angle between the resection plane and the component plane. The deviation of the component height, reflecting a change in the joint gap, was assessed as the distance between the two planes calculated at the lowest points on the medial and lateral compartments of the proximal tibial surface. Statistical significance was defined as p≤0.05.
Introduction
When evaluating the biomechanical performance of a total knee arthroplasty (TKA) implant design, device companies are usually required to select the “worst case scenario” for testing by the regulatory bodies. However, most test standards (e.g., ASTM, ISO) do not explicitly specify how the “worst case” should be determined. It is quite often that an extreme size (the smallest or the largest) in a system is taken as the “worst case” size. The smallest size is sometimes selected under the rationale that it has the smallest geometry thus the weakest mechanical structure. While the largest size is sometimes selected under the rationale that it is used on the biggest patients associated with the highest loads. However, implant geometry and in vivo load are two compounding factors that together determine the implant's biomechanical challenge. As the result, the true “worst case” must be determined considering both factors, and the choice could be design-specific. This study evaluated the femorotibial contact stress of a TKA implant system, and demonstrated that the extreme sizes may not simply be the “worst case”.
Methods
The femorotibial contact stress of a posterior-stabilizing TKA implant system was assessed using finite element analysis. Multiple sizes ranging from size 0 to 6 were analyzed. For each size, the CAD models were assembled at knee extension. A load equivalent to 4 times of patient body weight was applied. Average patient body weights were calculated based on the company's clinical database: 72.5, 76.0, 80.0, 87.4, 95.2, 103.4, and 111.0 kg for sizes 0, 1, 2, 3, 4, 5 and 6, respectively. Von Mises stresses in the polyethylene tibial insert were examined and compared among different sizes.
Introduction
Patellofemoral joint is an important aspect of the tri-compartmental knee joint complex. Total knee arthroplasty (TKA) replaces the articulating surfaces of distal femur and proximal tibia, and often times the patella as well. Understanding the size relationship between the femur and patella bones can provide valuable information for new prosthesis design and biomechanical analysis. However, taking anthropometric measurements on a large population of patients or even cadaveric specimens could be a challenge. As a result, there are currently little quantitative data existing in the literature regarding the size relationship between TKA patient's femur and patella. This study attempted to attack this question using a novel statistical approach and a large TKA patient database.
Methods
A multi-site clinical database operated by Exactech was used in this study. The database contains patient information of Optetrak TKA implant recipients from over 30 physicians in US, UK, and Colombia since 1995. Nine femoral implant sizes (0, 1, 2, 2.5, 3, 3.5, 4, 5 and 6) and six patellar implant sizes (26, 29, 32, 35, 38, 41 mm) were seen in these patients. Due to the low usage, femoral sizes 0 and 6 were excluded from this analysis. Taking primary TKA only, a total of 2,698 cases were included in this study. The size relationship between femoral implant and patellar implant was analyzed in this patient population. Gender effect was also examined.
Introduction
Previous studies of long-term CoCr alloy femoral components for TKA have identified 3rd body abrasive wear and inflammatory cell induced corrosion (ICIC). The extent of femoral condyle surface damage in contemporary CoCr femoral components is currently unclear. The purpose of this study was to investigate the prevalence and morphology of damage (3rd body scratches and ICIC) at the bearing surface in retrieved TKA femoral components from contemporary designs.
Methods
308 CoCr femoral TKA components were collected as part of an ongoing, multi-institutional orthopedic implant retrieval program. The collection included contemporary designs from Stryker (Triathlon n=48, NRG n=10, Scorpio n=31), Depuy Synthes (PFC n=27) and Zimmer (NexGen n=140, Persona n=1) and Biomet (Vanguard n=51). Hinged knee designs and unicondylar knee designs were excluded. Components were split into groups based on implantation time: short-term (1–3y, n=134), intermediate-term (3–5y, n=73) and long-term (6–15y, n=101). Each grouping was mainly revised for instability, infection and loosening.
Third-body abrasive wear of CoCr was evaluated using a semi-quantitative scoring method similar to the Hood method (Figure 1). A score of 1 had minimal damage and a score of 4 corresponded to damage covering more than 50% of the evaluated area. ICIC damage was reported as location of affected area. A white light interferometer (Zygo New View 5000) was also used to analyze the topography of severe damage of the bearing surface. For this analysis, three representative components from each cohort were selected and analyzed in three locations on the apex of the bearing surface. We analyzed the following roughness parameters: Ra, Rsk, and Rku.
Objective
The purpose of this study was to evaluate the efficacy and safety of the drained-clamped method with intra-articular infusion of tranexamic acid (TA) for reducing blood loss in total knee arthroplasty (TKA).
Material and Methods
From November 2011 to July 2014 inclusive, 72 patients with a diagnosis of osteoarthritis underwent unilateral primary TKA using a computed tomography (CT) free navigation system. Patients were randomly divided into two groups: group T (n=40) was given 2000 mg (40 ml) of TA and group W (n=32) was given 40 ml sterile saline only. All operations were performed under total anaesthesia through the medial mid-vastus approach. Cemented posterior stabilised or cruciate retaining prostheses were used. The patella was resurfaced. After tourniquet release and wound suture, TA or saline was infused into the knee joint in addition to the drained-clamped method for 2 hours. For VTE prophylaxis, all patients received bilateral intermittent pneumatic calf compressors, thromboembolic deterrent stockings, and subcutaneous injection of enoxaparin (4000IU daily). We evaluated the hematocrit, hemoglobin and the postoperative estimate of bleeding. At postoperative days 4, extremity venous ultrasonography was performed for the investigation of venous thromboembolism in the latest 40 patients and contrast-enhanced CT was performed in the latest 34 patients without a previous history of asthma and diminished renal function. The present study received institutional review board approval, and informed consent was obtained from all patients.
Introduction
Total knee arthroplasty (TKA) has achieved excellent clinical outcomes and functional performances. However, there is a need for greater implant longevity and higher flexion by younger and Asian patients. We determined the relationship between mobility and stability of TKA product because they are essential for much further functional upgrading. This research evaluated the geometry characteristics of femorotibial surfaces quantitatively by measuring their force of constraint by computer simulation and mechanical test.
Methods
We measured the force of constraint of femorotibial surfaces in order to evaluate the property of femorotibial surfaces. A total knee system was used for this evaluation, and has an asymmetrical joint surface, which restores the anatomical jointline in both sagittal and coronal planes, and is expected to permit normal kinematics, with cruciate-retaining fixed type.
We performed computer simulation using finite element analyses (FEA) and mechanical tests using knee simulator to measure the force of constraint regarding anterior-posterior (AP) and internal-external (IE) rotational direction in extension position, 90-degree flexion and a maximum flexion of 140-degree. In the FEA, Young's modulus and Poisson's ratio were set to 213 GPa and 0.3 for Co-Cr-Mo alloy as the femoral component, and 1 GPa and 0.3 for UHMWPe as the tibial insert, respectively. The force load to AP direction of tibial tray was measured when the femoral component moved plus or minus 10 millimeters. The moment load to IE rotational direction of tibial tray was measured when the femoral component moved plus or minus 20 degrees. The vertical load of 710 N was loaded on the femoral component during these measurements.
Thermal injury to the radial nerve caused by cement leakage is a rare complication after revision elbow arthroplasty. Several reports have described nerve palsy caused by cement leakage after hip arthroplasty. However, little information is available regarding whether radial nerve injury due to cement leakage after humeral stem revision will recover. In a recent study, radial nerve palsy occurred in 2 of 7 patients who had thermal injury from leaked cement during humeral component revisions. These patients did not regain function of the radial nerve after observation. We present a case of functional recovery from a radial nerve palsy caused by cement leakage after immediate nerve decompression in revision elbow arthroplasty[Fig. 1.2].
Unicompartmental knee arthroplasty (UKA) is often considered to be attractive alternate surgical technique to total knee arthroplasty (TKA) and high tibial osteotomy (HTO), in particular young patients. In addition, it is recently reported that preservation of joint line in UKA is crucial factor for positive long-term outcome, especially in revision case for UKA. However, the role of this joint line has neither been invested nor is it consciously bothered during surgical implantation.
Validated finite element (FE) analysis was introduced in this study to investigate the effects of maximum contact stress on polyethylene (PE) insert and maximum compressive stress in opposite compartments for joint line in fixed-type UKA. As suggested by Weber et al., FE model for joint line was developed by means of determination of the angle between the pre-operative joint line and the reference line from lateral cortical is of the femur. Based on the method above, joint lines were modeled in −3, −2, −1, 0, +1, +2, and +3 mm cases and these seven FE models were compared and analyzed (Fig. 1). All implant components were modeled as linear elastic isotropic materials. However, the model was considered to have plastic characteristics of PE insert. FE analysis was performed using high kinematics displacement and rotation inputs, which were based on the kinematics of the natural knee. ISO standards were used for axial load and flexion (Fig. 2).
The FE model was subjected to validation based on cadaveric experimental data available in the literature by Sohn et al. and from previous cadaveric tests conducted by current investigators. The maximum contact stress was found at around 43 % of the gait cycle in 0 mm case. There were no difference between ± 1 and 0 mm cases, but maximum contact stress on PE insert becomes greater in ± 3 mm cases. The maximum compressive stress of the lateral meniscus in 0 mm case occurred at 62 % of the gait cycle. There were no difference in positive joint line cases in maximum compressive stress, however maximum compressive stress of the lateral meniscus becomes greater in - 3 mm cases.
This study emphasized the importance of joint line preservation after implantation of UKA. It would be critical to determine the joint line in UKA surgery in future based on the result showing that there has been no remarkable difference in stress but changed rapidly from the position beyond the joint line. In future study, it would be valuable study to compare between joint lines of fixed- and mobile-type UKA.
Introduction
Oxide-based alumina (Al2O3) is used to manufacture femoral heads for total hip arthroplasty (THA). Silicon nitride (Si3N4) is a non-oxide ceramic used to make spinal implants. Ceramic materials are believed to be bioinert, (
Materials and Methods
Four self-mated Ø28 mm diameter Al2O3 femoral heads (n=2 each of BIOLOX®
“How does the knee move?” is a question of fundamental importance for treatment of knee injuries and knee replacement design. Unfortunately, we lack unambiguous and comprehensive knee function data sets and/or consensus on how healthy knees move. One can just as easily find reports stating the natural knee has a center of axial rotation in the medial compartment of the knee as in the lateral. This is due to technical and practical issues: It is extremely difficult to accurately measure knee motions during ambulatory activities and, when that can be done, very few studies have examined a range of weightbearing activities in the same study cohort. The purpose of this study is to report knee kinematics in a cohort of healthy older subjects whose motions were examined during four different movements, three of them weightbearing ambulation, using a high-speed stereoradiographic system.
Six healthy consenting subjects (age = 61 ± 5 years, body mass = 75 ± 8 kg, BMI = 27 ± 4) were observed using a high-speed stereoradiographic system while completing four tasks. Subjects were instructed to perform an unloaded, seated knee extension from high flexion to full extension; to walk at a self selected pace; to step down from a 7 inch platform; and to walk and perform a 90° direction change (pivoting). Stereoradiographic images (1080 × 1080 pixels) were acquired at 100 images/second using 40cm image intensifiers and pulsed x-ray exposures. The three-dimensional knee kinematics were measured using the XROMM software suite (
Average CoRs for all four activities were in the posterior-medial quadrant of the knee, with the CoR for open-chain knee extension being the most medial and gait the most lateral (Table 1, Figure 2). One-way ANOVA showed average CoRs are different (p « 0.001). There was considerable variation in individual CoRs, for example, with two knees showing lateral CoRs for gait and the remaining knees having medial CoRs.
It should not be surprising that natural knee motions vary with dynamic activity, yet knee kinematics often are presented as being one stereotypic, monolithic pattern of motion. Our data show that the same healthy subjects performing different dynamic activities manifest different knee motions, with open-chain knee extension having the most medial CoR and gait the most lateral. This finding is consistent with previous reports comparing stair climbing and gait in knees with various implant designs. Additional experimental data and, ultimately, validated numerical simulations should facilitate an increasingly accurate process for designing improved treatments for diseased and damaged knees.
Background
The use of robotics in joint arthroplasty was initiated in 1992 with the introduction of the ROBODOC® Surgical Assistant device for planning and active robotic preparation of the femoral canal in THA. From 1993–1996, an FDA trial was undertaken using pin-based fiduciary markers to register the CT to the robot coordinate system. From 2000–2006, a second FDA trial was initiated using a point-to-surface matching “pinless” registration system. Combined, these two studies offer the first long-term follow-up of robot-assisted THA using an active robotic system for preparation of the femoral canal during THA.
Methods
Due to the support of an open implant architecture, patients were implanted with either the Depuy AML, Howmedica Osteoloc, or Zimmer VerSys FMT. Combining patients from the two studies, 86 THA's were performed in 63 patients using the active robotic system. Of these 63 patients, 7 were confirmed to have died and 5 have been lost to follow-up, 2 declined to participate due to infirmity, 37 are still recruiting, and 12 are currently enrolled (16 hips). Data collected included: Harris Hip Scale, HSQ-12, WOMAC, UCLA Activity Score, VAS Pain Score as well as radiographic analysis. The demographics at follow-up were:
Introduction
Postoperative dislocation remains a vexing problem for patients and surgeons following total hip arthroplasty (THA). It is the commonest reason for revision THA in the US. Dual mobility (DM) THA implants markedly decrease the risk of THA instability. However, DM implants are more expensive than those used for conventional THA. The purpose of this study was to perform a cost-effectiveness analysis of DM implants compared to conventional bearing couples for unilateral primary THA using a computer model-based evaluation.
Methods
A state-transition Markov computer simulation model was developed to compare the cost-utility of dual mobility versus conventional THA for hip osteoarthritis from a societal perspective (Figure 1). The model was populated with health outcomes and probabilities from registry and published data. Health outcomes were expressed as quality-adjusted life years (QALYs). Direct costs were derived from the literature and from administrative claims data, and indirect costs reflected estimated lost wages. All costs were expressed in 2013 US dollars. Health and cost outcomes were discounted by 3% annually. The base case modeled a 65-year-old patient undergoing THA for unilateral hip osteoarthritis. A lifetime time horizon was analyzed. The primary outcome was the incremental cost-effectiveness ratio (ICER). The willingness-to-pay threshold was set at $100,000/QALY. Threshold, one-way, two-way, and probabilistic sensitivity analyses were performed to assess model uncertainty.
Introduction
Neutral mechanical alignment in TKA has been shown to be an important consideration for survivorship, wear, and aseptic loosening. However, native knee anatomy is described by a joint line in 3° of varus, 2–3° of mechanical distal femoral valgus, and 2–3° of proximal tibia varus. Described kinematic planning methods replicate native joint alignment in extension without changing tibiofemoral alignment, but do not account for native alignment through a range of motion. An asymmetric TKA femoral component with a thicker medial femoral condyle and posterior condylar internal rotation paired with an asymmetric polyethylene insert aligns the joint line in 3° of varus while maintaining distal femoral and proximal tibial cuts perpendicular to mechanical axis. The asymmetric components recreate an anatomic varus joint line while avoiding tibiofemoral malalignment or femoral component internal rotation, a risk factor for patellofemoral maltracking. The study seeks to determine how many patients would be candidates for a kinematically planned knee without violating the principle of a neutral mechanical axis (0° ± 3°).
Methods
A cohort comprised of 55 consecutive preoperative THA patients with asymptomatic knees and 55 consecutive preoperative primary unilateral TKA patients underwent simultaneous biplanar radiographic imaging. Full length coronal images from the thoracolumbar junction to the ankles were measured by two independent observers for the following: mechanical tibiofemoral angle (mTFA), mechanical lateral distal femoral angle (mLDFA), and mechanical medial proximal tibial angle (mMPTA). Patients who met the following conditions: mTFA 0°±3°; mLDFA 87°±3°; and mMPTA 87°±3°, were considered candidates for TKA with an asymmetric implant that would achieve a kinematic joint line and neutral mechanical axis. Similarly, patients with the following conditions: mTFA 0°±3°; mLDFA 90°±3°; and mMPTA 90°±3°, were considered candidates for TKA with a symmetric implant that would achieve a kinematic joint line and neutral mechanical axis.
Introduction
Dual modular hip prostheses were introduced to optimize the individual and intra-surgical adaptation of the implant design to the native anatomics und biomechanics of the hip. The downside of a modular implant design with an additional modular interface is the potential susceptibility to fretting, crevice corrosion and wear [1–2]. The purpose of this study was to characterize the metal ion release of a modular hip implant system with different modular junctions and material combinations in consideration of the corrosive physiological environment.
Methods
One design of a dual modular hip prosthesis (Ti6Al4V, Metha®, Aesculap AG, Germany) with a high offset neck adapter (CoCrMo, CCD-angle of 130°, neutral antetorsion) and a monobloc prosthesis (stem size 4) of the same implant type were used to characterize the metal ion release of modular and non-modular hip implants. Stems were embedded in PMMA with 10° adduction and 9° flexion according to ISO 7206-6 and assembled with ceramic (Biolox® delta) or CoCrMo femoral heads (XL-offset) by three light impacts with a hammer. All implant options were tested in four different test fluids: Ringer's solution, bovine calf serum and iron chloride solution (FeCl3-concentration: 10 g/L and 114 g/L). Cyclic axial sinusoidal compressive load (Fmax = 3800 N, peak load level of walking based on in vivo force measurements [3]) was applied for 10 million cycles using a servohydraulic testing machine (MTS MiniBionix 370). The test frequency was continuously varied between 15 Hz (9900 cycles) followed by 1 Hz (100 cycles). The metal ion concentration (cobalt, chromium and titanium) of the test fluids were analysed using ICP-OES and ICP-MS at intervals of 0, 5·105, 2·106 and 10·106 cycles (measuring sensitivity < 1 µg/L).
Introduction
The optimal bearing for hip arthroplasty is still a matter of debate. in younger and more active patients ceramic-on-polyethylene (CoP) bearings are frequently chosen over metal-on-polyethylene (MoP) bearings to reduce wear and increase biocompatibility. However, the fracture risk of ceramic heads is higher than that of metal heads. This can cause serious issue, as ceramic fractures pose a serious complication often necessitating major revision surgery – a complication more frequently seen in ceramic-on-ceramic bearings. To date, there are no long-term data (> 20 years of follow-up) reporting fracture rates of the ceramic femoral heads in CoP bearings.
Patients and Methods
We retrospectively evaluated the clinical and radiographic results of 348 cementless THAs treated with 2nd generation Biolox® Al2O3 Ceramic-on-Polyethylene (CoP) bearings, which had been consecutively implanted between January 1985 and December 1989. At implantation the mean patient age was 57 years. The cohort was subsequently followed for a minimum of 20 years. At the final follow-up 111 patients had died, and 5 were lost to follow-up (Fig. 1). A Kaplan-Meier survivorship analysis was used to estimate the cumulative incidence of ceramic head fractures over the long-term.
Total hip replacement (THR) is one of the most successful orthopedic operations, yet it continues to be plagued with problems despite the many advances in the procedure. Inconsistent placement of the acetabular cup persists even in the hands of most experienced surgeons, leading to early and late failure including instability, impingement, polyethylene wear, osteolysis, and component loosening. Cup mal-position is the single greatest cause of early instability and late polyethylene wear. Despite advent of recent technology including navigation and use of fluoroscopy cup mal-alignment persists. Several studies show 50% of experienced surgeons missing the target ranges using Lewinnnk desired safe zones. The act of impaction of the cup with a mallet is a crude and unreliable process. The surgeon's mallet imparts large and uncontrolled forces on the impaction rod creating variable torques, leading to inconsistent cup placement. Navigation and Fluoroscopy add precision to the operation however that level of precision is not maintained throughout the course of the operation. There is a market need for a tool that helps maintain “precision tolerance” through out the course of the operation.
A new device is theoretically proposed and prototyped for this process (Patent Pending). The new paradigm involves elimination of impaction forces created by unpredictable blows of the mallet. A low energy and high frequency device is utilized to insert and position the acetabular cup without the use of the mallet. The cup is inserted (not impacted) with significantly less force than the typical 2000N forces created with a mallet. The cup is also simultaneously positioned to the desired alignment while the device is active with the surgeon effectively feeling minimal haptic resistance to the movement of the cup. The system therefore proposes to eliminate cup mal-alignment for all surgeons, removing the primary cause of hip dislocations as well as factors contributing to late failure. In addition the idea allows the academic surgeon to better study the relationship of the position of the cup and clinical outcomes eliminating the need to use “safe zone ranges”. As well, this process completely eliminates acetabular fractures as a complication of this operation.
Two devices were prototyped with use of electrical and pneumatic energy. Both devices proved the concept. Both devices allowed modulation of the applied force and “effective” disarming of the frictional forces involved in cup impaction, allowing insertion and positioning of the acetbular cup to occur with smooth haptic control and without the use of violent force. The device can be used individually, with navigation and fluoroscopy, with robots and/or with any other intra-operative measurement device and can be a significant adjunct for THR.
Cup Mal-Alignment is an unsolved problem in THR surgery causing poor outcomes for patients, anxiety and a sense of failure for the surgeons, and a great cost to society in general. A new device is described to solve this problem. The science involved is proposed and described in detail and primarily involves understanding and utilizing the mechanical properties of bone/pelvis and understanding and manipulating the complex frictional forces at play.
Background
Total knee arthroplasty (TKA) is a cost-effective surgical procedure for degenerative knee disease and has good long-term results. However, these results are not always related to patient satisfaction and functional outcome. With an increasing demand of surgeons and patients on functioning of total knee implants, the need for adequate objective outcome measures is high. Imaging of the knee is commonly used in clinical practice and research to objectively measure many different outcome parameters concerning the implant, such as alignment and complications.1 However, techniques on comparison of the sagittal contour of the knee before and after implant placement are scarce.
Goal
To develop and describe a standardized method for measuring the sagittal contour of the implant in a 3D model of the knee before and after implant placement.
To achieve a long-lasting fixation of uncemented femoral knee implants, an adequate primary stability is required. Several factors, including the applied load, bone quality, surgical preparation, and implant characteristics affect the primary fixation. Recently, novel Attune® cementless femoral component has been proposed by DePuy Synthes (Warsaw, IN, USA). We aimed to compare the primary stability of this novel high-flex design against the conventional LCS® under different loading conditions (gait, deep knee bend (DKB), and high-flex loading), while accounting for the effect of bone quality and cut accuracy.
Six pairs of femora were prepared following the normal surgical procedure. Calibrated CT-scans and 3D-optical scans of the bones were obtained to measure bone mineral density (BMD) and bone cut accuracy, respectively. After implantation of the appropriate size implants (Left legs: Attune; right: LCS), a black-and-white speckle pattern was applied to each specimen (Fig.1B). The micromotion measurement was repeated three times in nine regions of interest (ROIs): the medial and lateral condyles from the posterior view; anterior, distal, and posterior regions from the medial and lateral views; the proximal tip of the anterior flange. The reconstructions were subjected to a gait load and a portion (around 50%) of the peak force of a DKB to prevent fracture of the proximal femur (Fig. 1A and Table. 1). The loads were derived from the Orthoload database using implant-specific inverse dynamics [1]. In addition, a sequence of DIC-images synchronized with the applied load was captured to find the relationship between micromotion and load. Afterwards, implants were pushed-off simulating 150° of flexion, while force-displacement graph was recorded.
BMD and bone cut accuracy were not significantly different between the groups. Under both loading conditions, Attune had a significantly lower micromotion (Table. 1). Cut accuracy was not a significant factor, and BMD was only significant for the comparison under the gait loading (not under DKB conditions). High-flex push-off force was not significantly different. However, Attune required a significantly higher load to reach a micromotion of 50 or 150 µm during the push-off test. Different relations between micromotion and applied load, depending on the loading configuration and implant design, were found (Fig. 2).
Our study has shown a clearly lower range of micromotion for the novel implant. Potential factors to explain the higher micromotion of LCS are parallel anterior and posterior bone cuts in the LCS versus the tapered bone cuts of the Attune. In addition, LCS has a less surface area in contact with bone due to the presence of a rim at the borders of the implant, which may have resulted in lower pre-stresses at the bone-implant interface.
Taking to account, the promising clinical outcome of LCS and also the lower range of micromotion of Attune, we suggest that the Attune has a potential to be at least as successful as the LCS system from a bone fixation point of view. However, further clinical evaluation of the Attune is necessary to assess its performance on the longer term.
Modular femoral stems for total hip arthroplasty (THA) were introduced to allow additional options for surgeons in controlling leg lengths, offset and implant stability. This option is widely used in our Region, where the study was conducted, having a modular neck stem nearly 35% of primary THA in 2013. Great majority of modular neck is made of Titanium alloy.
The study was designed as a retrospective descriptive case series of 67 hips in patients who underwent revision of a THA. All had a Titanium modular neck. In 44 cases revision was due to breakage of the neck, in the remaining 23 it was due to different reasons unrelated to modular neck such as bone fracture, breakage of a ceramic component, cup loosening.
Mean follow up was 3.5 yrs. For all patients excised capsule and surrounding tissue were graded for presence of necrosis, inflammatory exudate, lymphocytes, and wear particles using light microscopy of routine paraffin sections stained with hematoxylin and eosin. The retrieved modular neck-body and head-neck junctions were examined for evidence of fretting and corrosion. For some patient dosage of circulating Titanium was obtained. Approval was obtained from institutional review board.
It resulted that a variable amount of wear was observed in the first group of patients, with no evidence of lymphocytic reaction, but with variable notes of necrosis. Broken necks showed different patterns of damage, with different degree of corrosion, beside the fatigue fracture. In the second group wear was less evident or absent and negativity of lymphocyte reaction was substantially confirmed. Circulating Titanium ions were one order of magnitude higher in first group (mean 35 micrograms /liter).
It can be concluded that fracture of Titanium modular necks occurs progressively, wear does not induce lymphocytic reaction and circulating ions increase.
The RIPO register collects data of all primary and revision hip replacement surgeries performed in Region Emilia-Romagna, Italy since 1stJanuary 2000.
The present study is aimed to analyze the survival rate of patients with Biolox®delta and Biolox®forte components, (CeramTec, Plochingen Germany) considering possible confounding factors. Only patients living in the region are considered in analysis, to avoid the bias resulting from the ‘loss’ of non-resident patients. The analysis has been conducted only on uncemented THA and monoblock, double mobility cups as well as such with pre-assembled inserts were excluded. Therefore, the finally analyzed database consists of 30’617 cases; 13’323 Biolox®forte and 17’294 Biolox®delta heads, articulating against ceramic or PE.
Unadjusted survival analysis was calculated according to Kaplan Meier method; with prosthesis failure as end point, defined as the revision of any prosthetic component for any cause.
To avoid a possible bias, revision of the prosthesis due to breakage of modular necks of the stem have not been considered. The results are summarized in Table 1.
*survival at 6 yrs follow-up
After adjusting for age and gender it resulted that Biolox®delta - XLpoly and Biolox®forte – poly increase the risk of revision (HR 1.4 and 1.2) compared to Biolox®delta - Biolox®delta;
When only ceramic fractures are considered, we observed 1 fracture of a 36 mm Delta head (1/8’917 = 0.01%) and 38 fractures of 28 mm Forte heads. The 38 fractures occurred mainly in cer-cer coupling (35/3’537 implants= 1%) and occasionally in cer-poly couplings (3/4’246 implants = 0.07%).
Fracture or damage of the Biolox®delta insert occurred in 10 implants out of 14’260(0.07%), while it had a higher incidence in Forte inserts (36 casesout of 6’932 implants = 0.52%).
It can be concluded that the presence of a poly liner decrease the survival of the implant. Beside this Biolox®delta significantly improved the resistance to fracture of both head and insert.
Acknowledgements
This work was partially supported by Italian Ministry of Health, Grant ‘Early diagnosis of pending failure.’ and by Regione Emilia Romagna, cofounding of RIPO. All orthopedic Units of the Region are gratefully acknowledged for providing data to the Register
Since its introduction in total hip replacements in the 1960's, Ultra High Molecular Weight Polyethylene (UHMWPE) has played a major role as a bearing component material for joint arthroplasty. Concerns were raised when issues of wear resistance became apparent, and therefore Highly Crosslinked Polyethylenes were introduced. Such materials undergo a thermal treatment to quench the free radicals and reduce progressive oxidation.
However, said thermal treatment weakens the material mechanical properties and hence the use of antioxidants has been proposed and implemented in clinical use, mainly Vitamin-E. This can be added to the material before or after irradiation. If it is done before, part of the anti-oxydant is consumed during irradiation and so will not be available for its main purpose, and part reacts before irradiation with the free radicals thus reducing the crosslinking effect. If it is added after irradiation, high temperatures are required in order to diffuse it in the bulk material, and anyway the surface will be mainly rich in antioxidant. However, Vitamin-E tends to neutralize the free radicals on the oxidized lipid chain present in our body fluids and so in direct contact with the prosthetic components: such mechanism reduces the Vitamin-E quantity available for anti-oxidation purposes in the long run.
A UHMWPE doped with Hindered Amine Light Stabilizer (HALS) has been developed and tested for applications in large joint replacements where highest resistance to wear and tough mechanical properties are simultaneously required, such as tibial inserts for knee joints or acetabular inserts for large diameter heads.
Mechanical and biocompatibility tests were run in accordance with ASTM F 2565-06 and ISO 10993-1 with successful results and good reproducibility.
In particular, electro spin resonance exhibited a very high level of free radicals in the three samples, which confirms the properties of this new material. Free radicals are the result of the activation of the HALS molecules during irradiation, creating nitroxide radicals that will destroy the residual alkyl radicals responsible for the oxidation before and after implantation.
Biocompatibility tests proved absence of cytotoxicity, sensitization, irritation, genotoxicity or pyrogenic reactions.
The possible future applications for this new material in the arthroplasty field will be discussed along with the expected advances and advantages.
Introduction
Patient-specific cutting guides entered into clinical practice few years ago, first introduced in total knee replacement and recently also for other joint replacements. Advantages claimed are improving accuracy and repeatability in implant placement. New patient-specific guides to perform an accurate femoral neck resection and provide a precise alignment reference for acetabular reaming in total hip arthroplasty (THA) were recently developed by Medacta International: MyHip Technology. To date femoral guides can be designed for both anterior and posterior approaches, whereas acetabular guides are available only for posterior approach.
Evaluation of the repeatability and reproducibility of MyHip guides placement on cadavers is performed using a navigation system. Accuracy of femoral MyHip guides is evaluated also through one author's clinical experience (RP).
Materials and Methods
During each cadaveric session one body (2 hips) was available. A pre-operative CT scan has been obtained and used in order to create the 3D bone model of the pelvis and proximal femurs. Afterwards, a surgical planning for THA has been performed for each case, and, once it was approved by the surgeons, the designed patient-specific blocks were made.
Intraobserver and interobserver agreement in positioning the guides was assessed getting measures of femoral head resection height (mm), femoral head plane inclination/anteversion (°) and acetabular reaming axis orientation (°). 9 surgeons, through 2 cadaveric sessions, positioned each guide, removed it and re-positioned it 5 times alternatively. The system is judged as accurate if all measures differ less than 3mm and 5°for lengths and angles respectively from the average among all the acquisitions.
Clinical experience includes 68 THA which were performed between March 2014 and April 2015. Anterior femoral MyHip guides were used for the femoral head resection, while the acetabular side was prepared using the standard metal instrumentation for minimally invasive anterior approach. Intra-operative complications, as well post-operative leg length difference and implant positioning are assessed.
Objective
In total knee arthroplasty, three-dimensional “criss-cross” line locate femoral osteotomy and conventional osteotomy were used. By comparing the two methods osteotomy in patients before and after surgery and imaging-related information data, to evaluate the recent post operative efficacy, at the same time to find out if there has clinical evidence that three-dimensional “criss-cross” line locate femoral osteotomy can be used in total knee arthroplasty.
Methods
From July 2012 to July 2014, 64 patients who undertook the artificial total knee arthroplasty were divided into 2 groups: conventional osteotomy group(group A)and three-dimensional “criss-cross” line locate femoral osteotomy group(group B). In the X-ray of the two groups, it was measured that the hip-knee-ankle angle and the joint gap symmetry of 90°flexion degree. It was also measured that the two group joints range of motion. Those data were statistically analyzed. The KSS score of the two groups were compared.
Introduction
Good outcomes in reverse shoulder arthroplasty (RSA) rely in part on stability of the humeral component. Traditionally humeral components have been cemented, however there has been recent interest in press-fit fixation of humeral components in RSA. Lateralization of the head center in RSA can impart larger moments on the humeral component than for anatomic reconstructions, increasing the importance of distal humeral canal preparation for implant stability. To date, the primary stability of any type of press-fit humeral prosthesis has been largely unexplored. The goal of this study is to evaluate the effect of over-reaming the distal humeral canal in a press-fit humeral component in RSA.
Methods
Computed tomography (CT) data of the shoulder were obtained from 55 shoulders. Images were segmented to produce digital models of the humerus. Humeral components for RSA (2mm diameter size increments) were sized and placed per the surgical technique, including preparation of the humerus with the appropriate reamers (1mm increments). Finite element models for each specimen were created with heterogeneous bone properties derived from the CT scan. Pressfit between the bone and stem was resolved to quantify the initial contact pressure on the stem; each stem was then loaded at 566N oriented 20° lateral and 45° anterior. Overall motion of the stem was measured, as well as interfacial micromotion in the porous coating region (Fig. 1). The effect of line-to-line (L2L) reaming and over-reaming by 1 mm was evaluated using an unpaired Student's t-test, with significance defined at p<0.05.
Introduction
Fretting corrosion at the taper interface has been implicated as a possible cause of implant failure. Using
Methods
Experimental test set-up: An accelerated wear test was developed that consistently reproduced fretting wear features observed in retrievals. Biomet stems with smooth 4° Type-1 tapers were combined with Ti6Al4V Magnum +9 mm adaptors using a 2 or 15 kN assembly force. The head was replaced with a custom head fixture to increase the offset and apply a torque at the taper interface. The stems were potted according to ISO 7206-6:2013. The set-up was submerged in a test medium containing PBS and 90gl-1 NaCl. The solution was pH adjusted to 3 using HCl and maintained at 37°C throughout the tests. For each assembly case, n=3 tests were cyclically loaded between 0.4–4 kN for 10 Million cycles. Volumetric wear measurements were performed using a Talyrond-365 roundness measurement machine. The FE model was created to replicate the experimental set up. Geometries and experimental material data were obtained from the manufacturer (Biomet). The same assembly forces of 2 and 15 kN were applied, and the same head fixture was used for similar offset and loading conditions. The 4 kN load was applied at the same angles in accordance with ISO 7206-6:2013. Micromotions and contact pressures were calculated, and based on these a wear score was determined by summation over all contact points.
Introduction
Silicon nitride (Si3N4) is a ceramic material presently implanted during spine surgery. It has a fortunate combination of material properties such as high strength and fracture toughness, inherent phase stability, scratch resistance, low wear, biocompatibility, hydrophilic behavior, easier radiographic imaging and resistance to bacterial biofilm formation, all of which make it an attractive choice for orthopaedic applications beyond spine surgery. Unlike oxide ceramics, (
Methods
In the present study, a Si3N4 bioceramic formulation was exposed to thermal, chemical, and mechanical treatments in order to induce changes in surface composition and features. The treatments included grinding and polishing, etching in hydrofluoric acid solution, and heating in nitrogen or air. Resulting surfaces were characterized using a variety of microscopy techniques to assess morphology. Surface chemical and phase composition were determined using x-ray photoelectron and Raman spectroscopy, respectively. Streaming potential measurements evaluated surface charging, and sessile water drop techniques assessed wetting behavior.
Background
The adult acquired flat foot is caused by a complete or partial tear of the tibialis posterior tendon. We present the results of flexor digitorum longus transfer and medializing calcaneal osteotomy for recontruction of the deformity.
Material & Methods
Twenty-six patients (31 feet) with an average age of 58 years (36–75) were operated for an acquired flat foot deformity. The patients were seen before surgery, one year after surgery and an average of 85 months after surgery to assess the following parameters: AOFAS Score, VAS Score for pain (0–10). Foot x-rays in full weightbearing position (dorsoplantar and lateral) were done at every visit in order to assess the following parameters: tarsometatarsale angle on the dorsoplantar and lateral x-ray, talocalcaneal angle on the lateral x-ray, calcaneal pitch angle and medial cuneiforme height on the lateral x-ray.
Goals of the study
(1) to investigate the relationships between the bony contours of the knee and the Popliteus Tendon (PT) in the healthy knee and after implantation of a TKA and (2) to analyze the influence of implant sizing.
Hypothesis
With an apparently well-sized TKA, the position of the PT during knee flexion is modified compared with the preoperative situation.
Total knee replacement (TKA) surgery is an excellent and well-proven procedure for the treatment of end stage arthritis of the knee. Many refinements have taken place over time in an attempt to improve the components, wear qualities of the polyethylene, and the surgical technique to improve accuracy of component positioning, reduce patient pain, improve postoperative range of motion, ultimately improve results and to prolong the time until revision surgery may occur. This study examines the results of a gap balancing surgical technique in which components were implanted that had a posterior cruciate substituting design. This technique is performed with exacting alignment and balancing of the flexion and extension gaps prior to implantation of the knee components. The follow up is at a minimum of ten years.
515 consecutive knee replacements were followed prospectively for a minimum of ten years. The average age at surgery was 70 years, 73% of patients were female, with an average BMI of 31. All patients carried a diagnosis of osteoarthritis and a cemented, posterior stabilized design TKA (Balanced Knee System, Ortho Development) was implanted. All cases were performed by one of two experienced joint replacement surgeons.
The surgical technique demanded flexion and extension gap balancing as well as soft tissue balancing prior to finishing cuts being performed on the femoral side (See figures 1 and 2). Polyethylene spacers come in 1 millimeter increments.
28% of patients died postoperatively at an average of 7.4 years. These patients were older on average at the time of index surgery (76.6 years). None had undergone revision surgery. Of the remaining patients Knee Society scores (39 preop to 91 post op at ten years), function scores and range of motion all improved significantly. What's more, these results were not diminished at ten years. There were no component failures and less than 1% radiographic progressive lucent lines. Eleven revision surgeries (2.1 %) were performed with 2 acute superficial wound revisions, 3 late infections, one patellar tendon disruption from a fall at 7 years (BMI 45.7), 2 complete revisions performed elsewhere for unsatisfactory results, and 3 spacer exchanges for perception of postoperative laxity.
For the current study we also examined subgroups of the morbidly obese, octogenarians, and those with a preoperative valgus deformity of greater than 15%. At follow-up these subgroups fared very well with the exception of the heaviest BMI's being limited in range of motion because of soft tissue impingement.
Results suggest that this balancing technique gives excellent results with few complications at ten year evaluation. We believe that careful attention to bony and soft tissue balancing and equalization of gaps in flexion and in extension will prove beneficial for TKA longevity in even longer-term evaluation.
Figures 1 and 2 demonstrate gap balancing blocks and alignment rods in extension and in flexion
Introduction
Total knee arthroplasty (TKA) using conventional instrumentation has been shown to be a safe and effective way of treating end stage osteoarthritis by restoring function and alleviating pain. As robotic technology is developed to assist surgeons with intra-operative decision making such as joint balancing and component positioning, the safety of these advancements must be established. Furthermore, functional recovery and clinical outcomes should achieve comparable results to the gold standard of conventional instrumentation TKA.
Methods
Eighty-seven subjects (89 knees) underwent robotic arm assisted TKA by one of three investigators as part of an FDA and IRB approved Investigational Device Exemption (IDE). To achieve the primary endpoint of intra-operative patient safety using a robotic arm assisted cutting tool, the investigators completed questionnaires to assess a series of complications related to soft tissue damage associated with conventional TKA. Western Ontario and McMaster Universities Arthritis Index (WOMAC) and Knee Society Knee Scores (KSS) were collected pre-operatively and at three month follow-up.
Introduction
The Center for Medicare Services (CMS) recently proposed its phase 3 “Quality metrics” which include a section on patient engagement. CMS uses a fitness monitor as an example of an acceptable way for patients to contribute to the health record. Wearable technology allows measurement of activity, blood glucose, heart rate, sleep, and other health metrics, all of which can be useful in the management of patients in the orthopaedic practice. The purpose of this study is to thoroughly review existing fitness devices; and evaluate their potential uses in orthopaedic practice.
Methods
Several fitness devices exist; we focused on the top 27 based on popularity mentioned in reputable tech review articles. Features of each device were reviewed including type, specifications, interfaces, measurable outcomes (HR, steps, distance, sleep, weight, calorie intake), cost to the patient, barriers to compliance and strengths. Ultimately all these factors were taken into consideration to look into potential uses for orthopaedic surgery. The orthopedic applications of these devices were reviewed. Nonsurgical management applications were: compliance with physiotherapy, distance walked and stairs completed, and compliance with activity restrictions. Preoperative optimization included detection of sleep apnea, blood glucose monitoring, preoperative weight, and preoperative activity level. Postoperative outcomes included postoperative activity level, stairs, and distance walked.
Introduction
Cross-linked polyethylene in total hip arthroplasty has demonstrated excellent long-term wear resistance, leading to its acceptance as the standard bearing used in hip replacement. Adoption in knee replacement has been tentative, as the cross-linking process can decrease the polyethylene mechanical properties. The current study's purpose was examining survivorship of a fixed bearing knee replacement system featuring a moderately cross-linked polyethylene (MXLK) bearing, a cobalt chrome (CoCr) tibial tray with a highly polished top surface, and a new polyethylene-to-tray locking mechanism. The MXLK is made of ultra-high molecular weight GUR1020 resin irradiated with 5 Mrad gamma radiation, followed by a free radical quenching remelting annealing process, above the 135 degree melting point, that provides wear and fatigue resistance, and oxidative stability.
Materials & Methods
From November 2005 to June 2008, 539 PFC Sigma primary total knee replacements (TKA's) were prospectively entered into this non-comparative, multicenter, multinational study. Average age at time of surgery was 67 years, 57% were female, average body mass index was 30.4 kg/m2, and the dominant diagnosis was osteoarthritis (97%). Kaplan-Meier (KM) survivorship was the primary endpoint with primary event definition being removal of any component for any reason. The time variable was one of the following: time to revision, time to death, or time to last follow-up. Additional endpoints included: American Knee Society scores (knee and function), Oxford Knee score (range 12 to 60), SF-12 scores; radiographically assessed rates of radiolucent lines (RLL's) and osteolysis. RLL's greater than 2mm were counted. Progressive RLL's were those increasing in width from an earlier follow-up interval. Adjacent RLL's were defined as RLL's in adjacent zones. Complete RLL's were defined as RLL's completely around a component. This report provides 5-year results in this ongoing study with a 10-year final endpoint.
Purpose
To describe a 10-year long history of recurrent displacement and infection in a 37 yo female patient, HIV+/HCV+, with an history of drug addiction.
Clinical History
Starting from avascular necrosis of the hip (caused by prolonged HAART therapy), the patient underwent first uncemented THA in 2003. One month after implant a septic mobilization due to local abscess was treated with first two stage revision surgery (modular stem with use of retention liner for intraoperatory instability and dislocation of the implant) that lasted for almost 6 years. After 6 years of apparent good clinical condition and stability of the implants, the patient came back with a septic state of the hip, and recurrent instability, caused by complete abruption of the cup from acetabulum (Figure 1) Another two stage revision was planned; patient suffered dislocation of the spacer in first hours after intervention and 3 months later was performed second stage revision (stem with modular neck and head, cup with augmentation metal liner). Three days later patient suffered from another dislocation, so implant was further revised (change of modular neck + dual mobility head/cup), and a pelvipodalic cast was even made, considering the poor compliance of the patient,. One month later, due to another local septic state of the hip and in consideration of clinical history, a DAIR procedure was performed with revision of limited modular components until intraoperative stability was assessed (metal spacer + metal liner + dual mobility head and cup). For further assurance, an external fixator was placed around the hip (Figure 2).
Hip resurfacing has been proposed as an alternative to traditional total hip replacement in young, active patients. Metal-on-metal resurfacing devices were introduced in the 1990's, and a number of them reached the international market. The promise of bone preservation, more normal loading, greater activity, and easier revision led many surgeons to begin implanting these devices.
Over time, lessons have been learned regarding patient selection, implant selection, and surgical technique. Several devices have been withdrawn from the market, and many surgeons have abandoned the procedure. We continue to perform this procedure in substantial numbers, approximately 350 per year. The triad of a well-designed device, implanted accurately, in the correct patient has never been more critical than with these implants.
Following FDA approval in 2006, we studied the safety and effectiveness of one hip resurfacing device at our US institution in a large, single-surgeon series. We report our early to mid–term results in 476 patients who were under the age of 50 years at the time of hip resurfacing. Their average age was 42.8 (12–49) with an average follow-up of 4.8 years (2–8.8). Males represented 76% of the patients, and 91% had osteoarthritis. The average component size was 50.8mm (44–58) in men and 45.3mm (40–50) in women.
All surgery was performed in the lateral position using an anterolateral approach. Patients were allowed 75% weight-bearing for 6 weeks, followed by avoidance of strenuous exertion (running, jumping, heavy lifting) for 12 months. Follow-up intervals were 6 weeks, 1 year, 2 years, and 5 years. Follow-up percentage was 81%.
We measured a number of outcomes scores using a validated prospective observational registry at each follow-up interval. Improvement in HOOS Function was from pre-op of 41.4 + 22.7 to 93.5 + 15.2, Physical Activity Limitation improved from 2.4 + 2.5 to 8.2 + 2.6, and SF-12 Physical Composite Score improved from 31.7 +10.3 to 49.4 + 10.2.
There were no device-related failures in this series. There were no femoral neck fractures, no femoral component loosening, no failure of acetabular ingrowth, and no metal-related complications or pseudotumors. Two male patients, one a known heroin user, and the other with septic discitis, had remote hematogenous sepsis requiring component removal, each at 38 months after resurfacing. One female fell down an escalator 32 months after resurfacing sustaining a fractured acetabulum requiring component revision. Overall survivorship was 99.4%. Aseptic survivorship in males under age 50 was 100%.
We believe that hip resurfacing continues to offer a viable alternative for younger patients who would otherwise be candidates for total hip arthroplasty.
Significance
Increasing health care costs are bankrupting the United States and other industrialized countries. To control and/or reduce costs in health care, hospitals, payers, and patients are turning to evidence-based meta-analyses and health economic analyses to identify medical treatments that provide value (value=outcome/cost).
Methods
A proprietary joint arthroplasty database of patient reported outcomes (PROs) was analyzed to determine the minimum clinically important differences (MCIDs) for PROs used for total knee replacement surgery. The PROs analyzed were: (1) European quality of life (EQ-5D); Oxford Knee Score (OKS); (3) Lower Extremity Activity Scale (LEAS); and (4) Likert Pain Scale (LPS). The MCID was calculated using a distribution method where the MCID equals one half the standard deviation of the score change, MCID = σΔ/2. For clinical meta-analyses, new technologies must demonstrate statistically significant better PROs and the difference must be greater than the MCID. For economic analyses, quality adjusted life years (QALYs) are used. For example, if a total knee replacement (TKR) improved a patient's health-related quality of life by 10% (0.10) and the assumed implant life is 15 years, the patient received 1.5 QALYs (0.10 × 15 years). If the total cost of care for the knee replacement surgery is $30,000, the cost per QALY is $20,000 ($30,000/1.5 QALYs).
Significance
In spite of evidence that total knee replacement (TKR) surgery is effective, numerous studies have demonstrated that approximately 20 percent of patients who have undergone TKR surgery are not satisfied. This relatively high rate of patients who are not satisfied is the result of unmet patient expectations. The strongest predictor of dissatisfaction after TKR is unmet expectations (RR = 10.7, Bourne, Chesworth,
Methods
A proprietary joint arthroplasty database of patient reported outcomes (PROs) was analyzed to determine the recovery curve means and standard deviations of four PROs at six time points: pre-operatively, 6 weeks, 3 months, 6 months, 1 year, and 2 years post-operatively for total knee replacement surgery. The recovery graphs are stratified by percentile (10%, 26%, 50%, 75%, and 90%) The PROs analyzed were: (1) European quality of life (EQ-5D); Oxford Knee Score (OKS); (3) Lower Extremity Activity Scale (LEAS); and (4) Likert Pain Scale (LPS). The minimum clinically important difference (MCID) was calculated using a distribution method where the MCID equals one half the standard deviation of the score change, MCID = σΔ/2. The LEAS and LPS are used to measure patients’ expectations for pain relief and activity improvement. Prior to discussing surgery, patients are asked to report their pre-operative pain and activity levels and to specify their expected pain relief and activity improvement one year after surgery.
The main purpose of the present study was to determine long-term implant fixation of 15 unicompartmental knee arthroplasty (UKAs) with an all-poly tibial component using Roentgen stereophotogrammetric analysis (RSA) at a mean 10-year follow-up. The secondary purpose was to investigate whether the progressive loss of implant's fixation correlates with a reduction in Knee society score (KSS). Fifteen non-consecutive patients with primary knee osteoarthritis received a UKA with an all-poly tibial component were assessed using KSS scores pre-operatively and post-operatively and RSA on day 2 after surgery, then at 3, 6, and 12 months and yearly thereafter. The mean last follow-up was 10 years. An increase in maximum total point motion (MTPM) values from 6 months to 1 year post-operatively was found respect to post-operative reference. Implants’ displacement values were always 2 mm during the first 6 months, and then, two different trends were noticed in revised and non-revised implants. MTPM increase between 1 and 2 years of follow-up in non-revised UKAs was always 0.2 mm, whereas it was [0.2 mm in revised UKAs. A linear and negative correlation with statistical significance was found between MTPM and both clinical and functional KSS scores (p 0.001). Also in a long-term follow-up evaluation, RSA is an effective tool to predict functional results after an all-poly UKA providing also a relevant predictive value at 1 year follow-up, and this can be very useful for both patients and surgeons.
The main purpose of the present study is to prospectively investigate whether preoperative functional flexion axis in patients with osteoarthritisand varus-alignment changes after total knee arthroplasty and whether a correlation exists both between preoperative functional flexion axis and native limb deformity. A navigated total knee arthroplasty was performed in 108 patients using a specific software to acquire passive joint kinematics before and after implant positioning. The knee was cycled through three passive range of motions, from 0 to 120. Functional flexion axis was computed using the mean helical axis algorithm. The angle between the functional flexion axis and the surgical transepicondylar axis was determined on frontal (aF) and axial (aA) plane. The pre- and postoperative hip-kneeankle angle, related to femur mechanical axis, was determined. Postoperative functional flexion axis was different from preoperative only on frontal plane, while no differences were found on axial plane. No correlation was found between preoperative aA and native limb deformity, while a poor correlation was found in frontal plane, between aF and preoperative hip-knee-ankle angle. Total knee arthroplasty affects functional flexion axis only on frontal plane while has no effect on axial plane. Preoperative functional flexion axis is in a more varus position respect to the transepicondylar axis both in pre- and postoperative conditions. Moreover, the position of the functional axis on frontal plane in preoperative conditions is dependent on native limb alignment, while on axial plane is not dependent on the amount of preoperative varus deformity.
Introduction
Orthopaedic departments are increasingly put under pressure to improve services, cut waiting lists, increase efficiency and save money. It is in the interests of patients and NHS organisations to ensure that operating theatre resources are used to best effect to ensure they are cost effective, support the achievement of waiting time targets and contribute to a more positive patient experience.
Patients in the UK are expected to have undergone surgery once decided within 18 weeks. A good system of planning and scheduling in theatre enables more work, however is largely delegated to non-clinical managerial and administrative staff. After numerous cancellations of elective cases due to incomplete pre-operative work-up, unavailable equipment and patient DNAs, we decided to introduce a surgeon-led scheduling system.
Intervention
The surgeon-led scheduling diary involved surgeons offering patients a date for surgery in clinic. This allowed for appropriate organisation of theatre lists and surgical equipment, and pre-operative assessment.
Introduction
Failure of the neck-stem taper in one particular bi-modular primary hip stem due to corrosion and wear of the neck piece has been reported frequently1, and stems were recalled. A specific pattern of material loss on the CoCr neck-piece taper in the areas of highest stresses on the proximal medial male taper was observed in a retrieval study of 27 revised Rejuvenate implants revised after 3 to 38 month time in situ (Stryker, Kalamazoo, MI, USA) (Figure 1). One neck piece exhibited additionally wear marks at the distal end of the flat male neck taper indicating contact with the female taper of the stem. The purpose of this study was to understand the observed failure scenario of bottoming-out by investigating the stem taper morphologies.
Materials and Methods
The geometry of taper contact surfaces was determined using a Coordinate Measurement Machine (BHN 805, Mitutoyo, Japan). An algorithm based on the individual unworn areas of the respective taper surfaces was applied to all retrievals. One retrieval is additionally investigated by infinite focus microscopy (G4, Alicona, Austria) in the main wear areas on the neck piece taper, and the bottom, facing each other inside the junction (surfaces of the distal end of the male and the bottom of the female taper).
Introduction
In orthopaedics one of the most common complications is infection. The occurrence of a postoperative infection significantly increases the failure rate; both in the case of prosthetic and trauma surgery. Some patients despite a meticulous antiseptic procedures, a close monitoring of controls peri- and post-operative undergo the development of infection of the fixation devices with the risk of developing osteomyelitis. This risk is highly increased in the distal leg because of the known problems with blood supply and poor muscle coverage. The functionality of the affected segment is impaired, quoad fuctionem, with increased risk of amputation and sometimes with poor prognosis, quoad vitam. The therapeutic strategy proposed by our group is to treat an osteomyelitic site as a pseudo-tumor with a megaimplant following a ladder strategy driven by the NUSS classification. This work shows our experience with a developing system by Waldemar-LINK highlighting critical issues and preliminary results.
Objectives
The purpose of this study is to evaluate retrospectively the early outcome after the implantation of this megaprosthesis of the lower leg in infected post-traumatic bone defects and septic peri-device bone loss. We registered all the complications and infection recurrence.
Introduction
Throughout the world the number of large joint arthroprosthetic implants continues to increase and consequently the number of septic complications with prosthesis mobilizations, periprostehtic bone loss or non-unions. The implant of large resection prosthesis (megaprosthesis) in selected patients could be a good solution both in hip and knee infected prosthesis with bone defects.
The two stage techniques with a first operation to debride, prosthesis components removal and antibiotic spacer implantation followed by a subsequent final prosthetic implant offer great results even in highly complex patients.
Objectives
The purpose of this study is to evaluate retrospectively the outcome after the implantation of megaprosthesis of the lower limbs in prosthetic infected revision.
Introduction
Various anti-infective agents can be added to the surface of orthopaedic implants to actively kill bacteria and prevent infection. Silver (Ag) is a commonly used agent in various anti-infective applications. Silver disrupts bacterial membranes and binds to bacterial DNA and to the sulfhydryl groups of metabolic enzymes in the bacterial electron transport chain, thus inactivating bacterial replication and key metabolic processes. Recently we are implanting Silver coated megaprosthesis for the treatment of post-traumatic septic non unions/bone defects and for infected hip or knee prosthesis revision. We treat these complications utilizing a two steps procedure: 1° step: devices removal, resection, debridment and antibiotic spacer implantation; 2° step: spacer removal and megaprosthesis implantation. This technique produce a reactive pseudosynovial membrane, well known in traumatology (Masquelet technique), following the Chamber Induction Technique principles. This chamber creates the perfect environment in which implant the prosthesis with safety. We are nowadays investigating if this membrane could optimize the Silver antimicrobical effects reducing the Silver ions dispersion and reducing toxicity on the human body.
Objectives
The aim of this study is to perform a review of the literature about Silver coated implants in Orthopaedics and Trauma and to analyze our cases treated with this implants in order to measure their efficacy and the ion dispersion in urine and blood.
INTRODUCTION
The hip arthroplasty implant is currently growing up both in orthopedic and trauma practice. This increases the frequency of prosthesis revision due to implant loosening often associated with periprosthetic osteolysis that determine the failure and lead to a loss of bone substance. Nowadays there are numerous biotechnologies seeking to join or substitute the autologous or omologous bone use. These biotechnologies (mesenchymal stromal cells, growth factors and bone substitutes) may be used in such situations, however, the literature doesn't offer class 1 clinical evidences in this field of application.
MATERIALS AND METHODS
We performed a literature review using the universally validated search engines in the biomedical field: PubMed / Medline, Google Scholar, Scopus, EMBASE. The keywords used were: “Growth Factors”, “Platelet Rich Plasma”, “OP-1”, “BMP”, “BMP-2”, “BMP-7”, “Demineralized Bone Matrix”, “Stem Cell”, “Bone Marrow”, “Scaffold”, “Bone Substitutes” were crossed with “hip”, “revision”, “replacement” / “arthroplasty”, “bone loss” / “osteolysis.”
The histopathology of periprosthetic tissues has been important to understanding the relationship between wear debris and arthroplasty outcome. In a landmark 1977paper, Willert and Semlitsch (1) used a semiquantitative rating to show that tissue reactions largely reflected the extent of particulate debris. Notably, small amounts of debris, including metal, could be eliminated without “overstraining the tissues” but excess debris led to deleterious changes. Currently, a plethora of terms is used to describe tissues from metal-on-metal (M-M) hips and corroded modular connections. We reviewed the evaluation and reporting of local tissue reactions over time, and asked if a dose response has been found between metal and tissue features, and how the use of more standardized terms and quantitative methodologies could reduce the current confusion in terminology.
Methods
The PubMed database was searchedbetween 2000 and 2015 for papers using “metal sensitivity /allergy /hypersensitivity, Adverse Local Tissue Reaction (ALTR): osteolysis, metallosis, lymphocytic infiltration, Aseptic Lymphocytic Vasculitis-Associated Lesions (ALVAL), Adverse Reaction to Metal Debris (ARMD) or pseudotumor/ pseudotumour” as well as metal-on-metal / metal-metal AND hip arthroplasty/replacement. Reports lacking soft tissue histological analysis were excluded.
Results
131 articles describing M-M tissue histology were found. In earlier studies, the terms metal sensitivity / hypersensitivity /allergy implied or stated the potential for a Type IV delayed type hypersensitivity response as a reason for revision. More recently those terms have largely been replaced by broader terms such as ALTR, ALVAL and ARMD. ALVAL and metal hypersensitivity were often used interchangeably, both as failure modes and histological findings. Several histology scoring systems have been published but were only used in a limited number of studies. Correlations of histological features with metal levels or component wear were inconclusive, typically because of a high degree of variability. Interestingly, there were very few descriptions that concluded that the observed reactions were benign / normal or anticipated i.e. regardless of the histological features, extent of debris or failure mode, the histology was interpreted as showing an adverse reaction.
Bone ingrowth fixation of large diameter, beaded cobalt chromium cups is generally considered to be reliable but this is typically judged radiographically. To date, implant retrieval data of attached bone has been limited. This study evaluated correlations between the pre-revision radiographic appearance and the measured amount of bone attachment on one design of porous coated cup.
Methods
Twenty-six monoblock, CoCr Birmingham Hip Resurfacing (BHR, Smith and Nephew, TN, USA) cups with macroscopic beads and hydroxyapatite coating were studied. Seventeen were revised for acetabular malposition with the remainder revised for femoral loosening (4), pain (1), infection (1), dislocation (1) or lysis (2). Median time to revision was 35 months (10 – 70 months). Ten patients were female; the median age of all patients was 54 years. The pre-revision radiographs were visually ranked for cup-bone integration as follows: 0 = none, 1 = < 50%, 2 = 50 – 75%, 3 = 76 – 95%, 4 = > 96% integration. Rankings were made for the superior and inferior aspects, without knowledge of the appearance of bone on the retrievals. The revised cups were photographed at an angle so the dome and the cup periphery were visualized. The area of bone in four equal segments in each of the superior and inferior aspects was measured with image analysis software. A probe was used to differentiate bone from soft tissue. Only bone that covered the beads was counted. Correlation coefficients were calculated for the radiographic and image analysis data.
Results
Radiographically, most cups were assessed as having more than 50% of bone attachment and 7 cups were ranked as having almost total integration with bone. Only 2 cups were assessed radiographically as fully loose. Measured total bone attachment ranged from none to 55%. Superior and inferior percent ingrowth were highly correlated (corr=0.68, p<0.001) but there was no correlation between percent bone and x-ray rank (inferior corr=0.01, p=0.96; superior corr=0.23, p=0.26). There was no correlation between cup malpositioning as a reason for revision and x-ray integration ranking (superior p=0.34; inferior p=0.80).
BACKGROUND
This scientific work is a non-interventional, experimental and prospective comparative study of two very high-viscosity PMMA bone cements:
Fast-setting PMMA bone cements are used in the endoprothetics of the patella and knee (in Australia) and are also used to cement an artificial acetabulum (in the UK). Are there any differences regarding the characteristics of the two fast-setting PMMA bone cements?
MATERIALS AND METHODS
All cements were mixed as specified by the manufacturer and analysed on the following parameters: handling properties (mixing, waiting, working and hardening phase), powder/liquid-ratio, mechanical properties (ISO 5833:2002 and DIN 53435), fatigue strength (ISO 16402) and elution profile. All tests were done in an acclimatised laboratory with temperatures set at 23.5°C ± 0.5°C and a humidity of >40%. Of two batch numbers, 11 units of each bone cement were tested.
INTRODUCTION
Wettability of bearing couples has always been related to the tribological performance of implants, and it is understood to affect lubrication of surfaces. So far researchers fail to understand the real mechanisms governing the lubrication process of prostheses. Different models attempt to explain the phenomena, but more research is needed. To add more difficulties, some classical measuring techniques have provided inaccurate values of surface properties. For instance, wettability may seem a priori a simple technique capable of providing easy-to-read cost-effective information. However, ignoring surface preparation may lead to wrong values of wettability and mis-understanding of the results.
OBJECTIVES
The dependence of wettability of commercial bearing materials used in arthroplasty has been studied as a function of the cleaning procedure, showing the variability of the results, and providing a series of guidelines to understand and perform wettability measurements.
Introduction
Superficial wound complications can occur in up to 10% of total knee arthroplasty (TKA) patients and have been associated with deep infection. The ideal material for TKA closure should fulfill the following requirements: 1) fast intraoperative application, 2) minimal wound complications and discomfort, and 3) can be removed by patients without a home care visit. We present our experience with a novel, non-invasive, removable skin closure system compared to conventional staple closure.
Methods
We prospectively evaluated 105 consecutive patients who underwent unilateral or bilateral primary TKA and received skin closure consisting of the Zip 16 Surgical Skin Closure System (Zipline) for skin. All procedures were performed a by single surgeon (SBH) using a mini-midvastus approach. All patients were mobilized on the day of surgery and received 2 weeks of Rivaroxaban thromboprophylaxis. Patient demographics, medical comorbidities, in-hospital complications and wound healing and complications during the first 6-week post-operatively were recorded. Data was compared to a previous TKA cohort of 1,001 patients from the same surgeon who received staples for closure and warfarin for thromboprophylaxis.
Introduction
Positioning of a femoral sizing guide has been cited as being a critical intraoperative step during measured-resection based TKA as it determines femoral component rotation. Consequently, modern femoral sizing guides permit surgeons to ‘dial in’ external rotation when placing the guide. Although this feature facilitates guide placement, its effect on posterior femoral condylar resection and flexion gap stability is unknown. This study examines the effect of rotation on posterior femoral condylar resection among different posterior-referencing TKA designs.
Methods
Left-sided posterior-referencing femoral sizing guides and cutting blocks from nine posterior-referencing femoral sizing guides belonging to six TKA manufacturers were collected. Each guide underwent high-resolution photography at a setting of zero, three and greater than three degrees of external rotation. The axis of rotation for each guide was then identified and its location from the posterior condylar axis was recorded (figure). Cutting blocks from each system were then photographed and the amount of posterior condylar resection from the medial and lateral condyles was calculated for each setting of external rotation (figure). The posterior resection was then compared to the standard distal resections for each system.
Introduction
Cementless fixation is the current preferred method for acetabular reconstruction in total hip arthroplasty (THA). Despite promising long-term results among several designs, theoretic concerns regarding the high modulus of elasticity, low friction against bone and low volumetric porosity of contemporary cementless cups have spurred the introduction of novel porous surfaces that are designed to improve osseointegration and decrease aseptic loosening. Although several novel surfaces have been introduced into clinical use over the past decade, very little literature regarding their clinical and radiographic performance exists. The current study investigates the performance of one such novel surface, Tritanium (Stryker, Mahwah, NJ).
Methods
We prospectively evaluated 121 consecutive THAs performed in 94 patients by a single arthroplasty surgeon using the Tritanium Primary Acetabular Component (Stryker, Mahwah, NJ). 109 hips (90.1%) had adequate clinical and radiological follow-up for analysis. Clinical parameters recorded included implant survivorship, Harris Hip Scores, WOMAC and SF-12. Furthermore, radiographs at the 6-week, 1 year and most recent clinical visit were evaluated by two blinded observers for implant position, evidence of radiolucency, sclerosis and component migration.
Introduction
The longevity of total hip arthroplasty (THA) is dependent on acetabular component position. We measured the reliability and accuracy of a CT-based navigation system to achieve the intended acetabular component position and orientation using three dimensional imaging. The purpose of the current study was to determine if the CT-guided robotic navigation system could accurately achieve the desired acetabular component position (center of rotation (COR)) and orientation (inclination and anteversion). The postoperative orientation and location of the components was determined in 20 patients undergoing THA using CT images, the gold standard for acetabular component orientation.
Methods
Twenty primary unilateral THA patients were enrolled in this IRB-approved, prospective cohort study to assess the accuracy of the robotic navigation system. Pre- and post-operative CT exams were obtained and aligned 3D segmented models were used to measure the difference in center of rotation and orientation (anteversion and inclination). Patients with pre-existing implants, posttraumatic arthritis, contralateral hip arthroplasty, septic arthritis, or previous hip fracture were excluded. All patients underwent unilateral THA using robotic arm CT-guided navigation (RIO Makoplasty; MAKO Surgical Corp).
Introduction
The current recommendation by the AAOS in the 2010 clinical practice guidelines for the use of MRI to diagnose a periprosthetic joint infection (PJI) is “inconclusive” given the lack of evidence to support its use. The purpose of this study was to determine the utility of MRI with metal reduction artifact sequencing in diagnosing a periprosthetic joint infection (PJI) after total hip arthroplasty (THA).
Methods
176 patients who underwent MRI with multi-acquisition variable resonance image combination (MAVRIC) to reduce metal artifact for a painful THA between the years of 2009–2013 were retrospectively evaluated. All MRIs were read by one of four radiologists with extensive experience in interpreting MRIs after THA. All MRIs were performed using a 1.5 Tesla magnet. Of the 176 patients examined, 16 patients were found to have a deep periprosthetic joint infection using Musculoskeletal Infection Society (MSIS) criteria after the MRI was performed. MRI reads were classified as either positive (read as “evidence of active infection” or “suspicious for infection”) or negative (read as no evidence of infection). Only one patient who had a positive MRI read was excluded because of loss to followup after the MRI was performed.
Because of post traumatic mal union or constitutionnal intraosseous femoral or tibial deviation, an extra articular deformity may be present in patients requiring TKR. In those cases, recreation of the mechanical axis will affect the orientation of femoral or tibial bone cuts and soft tissue balance. In those important deformities, an extra articular correction may be necessary. Between 1998 and 2013 we performed 31 TKR associated with femoral (6 cases) or tibial (25 cases) osteotomy in one time surgery. This study was prospective and the patients were examinated at 1, 2, 5, 10 and 15 years for the first patients. There were 17 males (one bilateral case) and 13 females with a 63 years average age (from 29 to 79). The deformity was constitutionnal in 14 cases, post trauma in 9 cases, post osteotomy in 8 cases. The extra articular deformity was between 10° and 35°: 15 in varus, 11 in valgus, 2 multidirectionnal, 1 intraosseous flessum, 1 important translation and 1 rotational deformity. In all the cases we used a long stem implant in the osteotomized bone: an osteosynthesis was performed in 26 cases (7 plates, 19 stapples). A posterostabilised prosthesis was used in 28 patients, a CCK implant in 3. We studied pre and post operatively with a 3 to 17 years follow up, IKS scoring, knee motion, knee stability and radiologicaly, HKA, tibial and femoral mechanical angle. In the knees with a varus deformity the average HKA was 158° before surgery and 181 after osteotomy combinated with TKR. In the valgus cases, the average HKA was 198° pre and 179° post operatively. Complications consisted in 1 peroperative fracture, 1 extension lag of 15° and 1 hematoma.
TKR associated with osteotomy seems to be a possible alternative in patients with severe constitutional or post traumatic extra articular deformities after discussion of the other solutions: osteotomy and TKR in two times surgery (particulaly in young patients) or constraint TKR (rotating hinged implants) in patients over 80 years of age.
Introduction
Deformity of knee joint causes deviation of mechanical axis in the coronal plane, and the mechanical axis deviation also could adversely affect biomechanics of the ankle joint as well as the knee joint. Particularly, most of the patients undergoing total knee arthroplasty (TKA) have significant preoperative varus malalignment which would be corrected after TKA, the patients also may have significant changes of ankle joint characteristics after the surgery. This study aimed 1) to examine the prevalence of coexisting ankle osteoarthritis (OA) in the patients undergoing TKA due to varus knee OA and to determine whether the patients with coexisting ankle OA have more varus malalignment, and 2) to evaluate the changes of radiographic parameters for ankle joint before and 4 years after TKA.
Methods
We evaluated 153 knees in 86 patients with varus knee OA who underwent primary TKA. With use of standing whole-limb anteroposterior radiographs and ankle radiographs before and 4 years after TKRA, we assessed prevalence of coexisting ankle OA in the patients before TKA and analyzed the changes of four radiographic parameters before and after TKA including 1) the mechanical tibiofemoral angle (negative value = varus), 2) the ankle joint orientation relative to the ground (positive value = sloping down laterally), 3) ankle joint space, and 4) medial clear space.
Introduction
Glenoid loosening, still a main complication in shoulder arthroplasty, could be related to glenohumeral orientation and conformity, cementing techniques, fixation design and periprosthetic bone quality [1,2]. While past numerical analyses were conducted to understand the relative role of these factors, so far none used realistic representations of bone microstructure, which has an impact on structural bone properties [3]. This study aims at using refined microFE models including accurate cortical bone geometry and internal porosity, to evaluate the effects of fixation design, glenohumeral conformity, and bone quality on internal bone tissue and cement stresses under physiological and pathological loads.
Methods
Four cadaveric scapulae were scanned at 82µm resolution with a high resolution peripheral quantitative computer tomography (XtremeCT Scanco). Images were processed and virtually implantated with two anatomical glenoid replacements (UHMWPE Keeled and Pegged designs, Exactech). These images were converted to microFE models consisting of nearly 43 million elements, with detailed geometries of compact and trabecular bone, implant, and a thin layer of penetrating cement through the porous bone. Bone tissue, implant and cement layer were assigned material properties based on literature. These models were loaded with a central load at the glenohumeral surface, with the opposite bone surface fully constrained. Effects of glenohumeral conformity were simulated with increases of the applied load area from 5mm-radius to a fully conformed case with the entire glenoid surface loaded. The models were additionally subjected to a superiorly shifted load mimicking torn rotator cuff conditions. These models were solved and compared for internal stresses within the structures (Figure 1) with a parallel solver (parFE, ETH Zurich) on a computation cluster, and peak stresses in each region compared by design and related to apparent bone density.
Background
Joint replacement surgery has been shown to be successful in post solid organ transplantation patients. However, complication rates, revision rates, and overall mortality can be higher in this population compared to patients who have not undergone solid organ transplantation. Many transplant patients have a decreased life expectancy. Therefore, literature suggests that joint replacement surgery be offered to qualifying patients early on when symptomatic. This study compares the outcomes of patients who have undergone solid organ transplantation as well as a joint replacement to patients that have only undergone joint replacement surgery.
Methods
We retrospectively gathered 42 transplant (T) patients over a ten year period, 2003–2013, that underwent a liver (21) or kidney (21) transplant as well as primary total knee arthroplasty (TKA) (23) or total hip arthroplasty (THA) (19). We then gathered 42 non-transplant (NT) patients matched for procedure, age, body mass index (BMI), American Society of Anesthesiologists (ASA) score, and age adjusted Charlson co-morbidity index (ACCI) score who only underwent TKA or THA with no transplant. We used Chi-Square, T test, and multivariate analysis to compare the two groups with regard to number of complications (NOC), readmissions at 30 and 90 days post surgery, length of stay (LOS), number of intensive care unit (ICU) admissions, and total direct cost (TDC) per hospital stay.
Background
The Perioperative Surgical Home (PSH) is a multi-disciplinary rapid recovery pathway aimed at transforming surgical care by delivering value and improving outcomes and patient satisfaction. Our institution developed a PSH pathway for total hip arthroplasty (THA) patients in March 2014. The Orthopaedic and Anesthesia Services co-managed the patients throughout the entire surgical process. Weekly meetings were held to discuss medical and social requirements for upcoming patients including disposition planning. All patients received day of surgery physical therapy, and anesthesia post-surgical pain control and medical co-management. We hypothesized that the PSH would provide enhanced care for THA patients. To our knowledge this is the first report on the PSH in a total joint population
Methods
We prospectively followed 180 THA patients from the PSH group (SH) and compared them to a group matched for age, body mass index (BMI), American society of anesthesiologist score (ASA), and Charleson comorbidity index score (CCI) that were not involved in the PSH (NSH). We used Wilcoxon, Chi square, and multivariate analysis to compare the groups for length of stay (LOS), total direct cost (TDC), complications, readmissions at 30 days, and discharge disposition location.
Introduction
Failure of acetabular components has been reported to lead to large bone defects, which determine outcome and management after revision total hip arthroplasty (THA). Although Kerboull-type (KT) plate (KYOCERA Medical Corporation, Kyoto, Japan) has been used for compensating large bone loss, few studies have identified the critical risk factors for failure of revision THA using a KT plate. Therefore, the aim of this study is to evaluate the relationship between survival rates for radiological loosening and the results according to bone defect or type of graft.
Patients and methods
This study included patients underwent revision THA for aseptic loosening using cemented acetabular components with a KT plate between 2000 and 2012. Bone defects were filled with beta Tricalcium phosphate (TCP) granules between 2000 and 2003 and with Hydroxyapatite (HA) block between 2003 and 2009. Since 2009, we have used femoral head balk allografts. Hip function was evaluated by using the Japanese Orthopaedic Association (JOA) score and University of California, Los Angeles (UCLA) activity. Acetabular defects were classified according to the American Academy of Orthopedic Surgeons (AAOS) classification. The postoperative and final follow-up radiographs were compared to assess migration of the implant. Kaplan–Meier method for cumulative probabilities of radiographic failure rate, and the comparison of survivorship curves for various subgroups using the log-rank test were also evaluated. Logistic regression was performed to examine the association of such clinical factors as the age at the time of operation, body mass index, JOA score, UCLA activity score, and AAOS classification with radiographic failure. Odds ratios (ORs) and 95% CIs were calculated. Multivariate analysis was performed to adjust for potential confounders by clinical factors. Values of
Purpose
To perform comparative analysis between the results of internal fixation using proximal femoral nail system and bipolar hemiarthroplasty in pantrochanteric hip fracture in elderly patients.
Materials and Methods
From January 2006 to February 2012, we reviewed 43 patients, who were treated surgically for pantrochanterichip fractures, with a minimum of 2 years follow up. The patient's age was older than 70 year old. The patients were divided into three groups and evaluated, retrospectively. The fracture reduction were regarded as satisfactory in S-OR-IF group(17 cases) and unsatisfactory in US-OR-IF group(9 cases) and the other group was treated with bipolar hemiarthroplasty (BHA group, 17 cases.)
The purpose of this study was to evaluate the Mid-term results (minimum 5 year) of the use of 36 mm metallic femoral head coupled with 1st generation HXLPE in patients with the age of less than or equal to 50 years-old. This retrospective study included 31 cases sustained hip pain needed Total Hip Replace Arthroplasty. We used cementless stem(FMT, Zimmer, Warsaw, Indiana) at 28 cases and cement stem(Versys, Zimmer, Warsaw, Indiana) at 3 cases. We used Trilogy (Zimmer, Warsaw, Indiana) in all cases as an acetabular cup and Longevity (Zimmer, Warsaw, Indiana) in all cases as a HXLPE. Mean acetabular cup size was 52.88mm. Mean HXLPE liner thickness at 45o was 6.18mm [Fig.1]. Mean Harris hip score was 91(86–96) and all cases obtained more than 15 scores in Merle d'Aubigne and postel method at recent follow ups. All femoral stem showed stable fixation status. Mean acetabular cup Inclination was 50.6o and Anteversion was 23.1o. During follow ups, there was no complication including dislocation, osteolysis, infection and plastic fracture. Bedding-in wear rate was 0.079±0.034mm/yr. And Steady- state was 0.043±0.016mm/yr. In vitro study, 1stgeneration HXLPE showed negative mechanical property changes due to high dose radiation and remelting. So, concerns remained in using HXLPE to active patients. But we checked a good results in terms of functional scores and wear rates. And, there was no major complication during minimal 5 years check ups. So, the authors thought THRA with 36mm- metallic heads on 1st-Generation Highly Cross-linked Polyethylene as a bearing surface could be a good option in less than or equal to 50 years patients.
Introduction
The supercapsular percutaneously-assisted total hip (SuperPath) replacement surgical technique was developed as a hybrid of the supercapsular (SuperCap) and percutaneously-assisted total hip (PATH) approaches. The technique does not require any muscle release and preserves the external rotators with the objectives of reducing hospital length of stay, increasing the percentage of subjects discharged home, and decreasing complications (e.g. dislocation). The purpose of this study was to evaluate these perioperative outcomes associated with a large consecutive cohort of prospectively followed subjects.
Patients and Methods
Four hundred eighty-six (486) consecutive total hip replacements (THRs) were performed using the SuperPath technique in 469 subjects between April 29, 2010 and December 31, 2013 and prospectively followed. Perioperative outcomes including length of stay, discharge status, skin-to-skin surgical time, estimated blood loss, transfusions, and complications were collected. Subjects were also evaluated using Harris Hip Scores (HHS), UCLA Activity Scores, range of motion, and Numeric Rating Scale (NRS-11) Scores.
The surgical correction of hammer digits offers a variety of surgical treatments ranging from arthroplasty to arthrodesis, with many options for fixation. In the present study, we compared 2 buried implants for arthrodesis of lesser digit deformities: a Smart Toe® implant and a buried Kirschner wire. Both implants were placed in a prepared interphalangeal joint, did not violate other digital or metatarsal joints, and were not exposed percutaneously. A retrospective comparative study was performed of 117 digits with either a Smart Toe® implant or a buried Kirschner wire, performed from January 1, 2007 to December 31, 2010. Of the 117 digits, 31 were excluded because of a lack of 90-day radiographic follow-up. The average follow-up was 94 to 1130 days. The average patient age was 61.47 (range 43 to 84) years. Of the 86 included digits, 48 were left digits and 38 were right. Of the digits corrected, 54 were second digits, 24 were third digits and 8 were fourth digits. Fifty-eight Smart Toe® implants were found (15 with 19-mm straight; 2 with 19-mm angulated; 34 with 16-mm straight; and 7 with 16-mm angulated). Twenty-eight buried Kirschner wires were evaluated. No statistically significant difference was found between the Smart Toe® implants and the buried Kirschner wires, including the rate of malunion, nonunion, fracture of internal fixation, and the need for revision surgery. Of the 86 implants, 87.9% of the Smart Toe® implants and 85.7% of the buried Kirschner wires were in good position (0° to 10° of transverse angulation on radiographs). Osseous union was achieved in 68.9% of Smart Toe® implants and 82.1% of buried Kirschner wires. Fracture of internal fixation occurred in 12 of the Smart Toe® implants (20.7%) and 2 of the buried Kirschner wires (7.1%). Most of the fractured internal fixation and malunions or nonunions were asymptomatic, leading to revision surgery in only 8.6% of the Smart Toe® implants and 10.7% of the buried Kirschner wires. Both the Smart Toe® implant and the buried Kirschner wire offer a viable choice for internal fixation of an arthrodesis of the digit compared with other studies using other techniques.
Purpose
The purpose of this study was to evaluate and compare the clinical, radiological outcomes of the group of patients with distal femoral cortical hypertrophy (DFCH) and without DFCH after hip arthroplasty using a cementless double tapered femoral stem and to analyze a correlation between patients factors and DFCH.
Materials and Methods
Four hundreds four patients (437 hips) who underwent total hip arthroplasty (n = 293) or hemiarthroplasty (n = 144) using a Accolade TMZF femoral stem between Jun 2006 and March 2012 and were follow up period more than 24 months after surgery were enrolled in this study. They were divided into 2 groups, the one group (n = 27) included patients with DFCH, and the other group (n = 410) included patients without DFCH. The mean follow up period was 54.5 months (range, 24 to 85 months) and 56.2 months (range, 24 to 92 months) for patients with DFCH and without DFCH.
Total knee arthroplasty(TKA) is a major surgery and the postoperative pain can be severe. Inadequate pain relief may lead to delayed mobilisation, greater risk of developing deep vein thrombosis, coronary ischemia, poor wound healing, longer hospital stay and decreased patient satisfaction. Severe postoperative pain also increase the risk of developing long term persisting pain. Conventional pain managements with intermittent parenteral opioids and non-steroid anti-inflammatory drugs have been proved to be less effective and are often lead to unwanted side effect. Currently, there is a trend to use multimodal pain management to minimize narcotic consumption and to avoid narcotic-related side effects. The use of transdermal opioid patch has not been well established. The purpose of this study was to investigate the analgesic effects of various transdermal non-opioid patches in patients after elective total knee arthroplasty in a prospective, randomised control trial.
After receiving Institutional Review Board approval, 89 patients(89 knees) received primary unilateral total knee arthroplasty were included in this study. All patients were randomly allocated into three groups. The 3 groups were demographically similar for sex, age, and body mass index. They received patches with 5% lidocaine, flurbiprofen and only vehicle patches without any medication. The patches were placed on the tourniquet area postoperatively, then on patient-directed area of discomfort every 6–8 hours. Each patient received the same standard postoperative analgesics including single intra-articular injection, NSAID, acetaminophen, and rescue opioids as needed. All patients were interviews everyday and the primary outcome was the visual analog scale. Besides, consumption of rescue opioids, progress of active movement, and inpatient stay were also recorded. Our hypotheses were transdermal non-opioid patches would provide effective pain relief and reduce the consumption of opioids as well as their side effects.
There were 30, 29, and 30 patients in group I, II and III. The mean ischemic time(tourniquet time) was 56.0, 61.4, 55.5 minutes, respectively. The narcotics consumptions were 11.77, 20.12, and 15.57 mg, respectively. The day achieved active flexion to 90 degrees were 1.83, 1.97, and 2.03 days, respectively. The inpatient stay was 6.47 days for group I patients, 6.81 days for group II patients, and 6.77 days for group III patients. The mean episodes of breakthrough pain(VAS>4) were 3, 3, and 3.7 times, respectively. There was no related adverse effects occurred with the use of non-opioid trasndermal patches.
Compared to placebo group, favourable results were noted in non-opioid transdermal patches, including opioid consumption, active knee flexion, inpatient stay and episodes of breakthrough pain in spite of insignificant statistical difference. High satisfaction without any complication were noted. Besides, non-opioid transdermal patches are also cost effective. There were only a few literature discussing about non-opioid patches in patients with total knee arthroplasty. The results showed indifferent pain improvement and no significant additional pain relief. Our results were compatible with current related studies, which showed no significant improvement. This is the first study to compare the analgesic efficacy of different non-opioid tansdermal patches in a prospective randomised trial.
Background
The optimal strategy for postoperative deep venous thrombosis (DVT) prophylaxis remains among the most controversial topics in hip and knee arthroplasty. Warfarin, the most commonly used chemical anticoagulant, initially causes transient hypercoagulability; however the optimal timing of treatment with respect to surgery remains unclear. Our purpose was to evaluate the effects of pre- versus postoperative initiation of warfarin therapy with a primary endpoint of perioperative change in hemoglobin (pre- minus post-operative level), with secondary endpoints of postoperative International Normalized Ratio (INR), drain output, and bleeding/thrombotic events.
Methods
A quasi-experimental study design was employed, under which patients were assigned to begin taking warfarin the night prior to surgery or the night following surgery based on day of the week seen in clinic. An a priori power analysis was conducted in order to ensure appropriate enrollment to detect a 0.5 g/dL difference in perioperative change in hemoglobin between groups, given an alpha level of 0.05 and beta of 0.80. Based on the results, the study included all primary, elective total hip and knee arthroplasties performed by a single surgeon over a 12 month period. Fifteen patients were excluded (7 chronic anticoagulation, 3 hip fractures, 2 medical contraindications, 3 simultaneous procedures), leaving 165 cases (108 hips, 57 knees) available for study. Of these, 73 received warfarin preoperatively (49 hips, 24 knees) and 92 postoperatively (59 hips, 33 knees). Warfarin was dosed according to a standard nomogram in both groups. INR (on postoperative days 1 and 2), perioperative decrease in hemoglobin (difference between level preoperatively and on postoperative days 1 and 2), and drain outputs were compared between groups using a student t test. Adverse events (transfusions, hematomas, epidural complications, and pulmonary embolus) were compared using two-tailed Fischer's exact test.
Retrieval studies of metal-on-metal (MOM) resurfaced hips revealed cup “edge wear” as a common failure mechanism [Morlock-2008]. Retrieval analysis of total hip arthroplasty (THA) also demonstrated extensive rim wear (Fig. 1: 190–220o arcs), typically across the superior cup [Clarke-2013]. Such wear patterns have not been demonstrated in hip simulator studies. The simulator “steep cup” models typically had motion arcs (flexion, etc.) input via the femoral head [Leslie-2008, Angadji-2009]. With fixed-inclination cups this produces constant loading of cup rim against the head (Fig. 2a). This is unlikely to be the physiological norm, unless patients walk constantly on the rims of mal-positioned cups. More likely the patients produce edge-wear intermittently due to functional and postural variations. Therefore a novel simulator model is proposed in which the cup undergoes edge-wear intermittently at one extreme of flexion (Fig. 2a). Our study objective using this new simulator model (Fig. 2a, b) was to (i) demonstrate MOM wear-rates and wear patches as a function of these dynamic-inclinations (40 o, 50 o, 70o), and (ii) compare the simulator data to MOM retrievals (Fig. 1).
Two simulator studies were run, both using 60mm MOM. Four bearings were run to 1-million cycles (1Mc) with cups peaking at 40 and 50° dynamic-inclinations, thus providing control data with no edge-wear. In 2nd study, 4 MOM were run with cups given a dynamic-inclination of 70° to produce edge-wear effects. In study-2 currently at 2.5Mc duration, the femoral heads showed the two classical wear phases with run-in at 1.7mm³/Mc and steady-state at 0.084mm³/Mc (Fig. 3a). Wear-rate for cups at 2.34mm³/Mc was 40% higher than heads and continued to rise linearly with time (Fig. 3a). At 2.5Mc, cup wear averaged ×5.7 greater than heads and resulting wear-patterns extended 85°−225° around cup rim (Fig. 3b: average 151°). In study-1, wear patches in cups with 40° dynamic-inclination approached within 12.4mm of the cup rim as denoted by circumferential grooves. This margin-of-safety (MOS) represented a 24°angle. The cup wear-patch averaged area of 1,760mm2. With cups run at 70o dynamic-inclination, the wear patches were transferred an additional 30o towards the rim thereby representing a 6° transfer across the rim.
This is the 1st wear study to use the new dynamic-inclination test mode to better simulate cup function in vivo. It was particularly satisfying to see the similarity in wear-patterns between retrieval (Fig. 1) and simulator cups (Fig. 3b). It is also the 1st study to monitor sites and magnitudes of cup wear areas and to purposely produce “edge wear”. The cups with 40° and 50° dynamic-inclinations had large margins of safety. With 70° dynamic-inclination the margin of safety was lost - effectively there was a 6° transfer of the wear patch across the cup rim. Even this apparently small effect at one location in each gait cycle sufficiently perturbed MOM performance that wear increased by an order of magnitude. Notably this was all cup wear and not by femoral head participation. The study continues but at 2.5Mc duration the cups revealed 5-fold greater wear than heads.
Metal-on-metal retrieval studies indicated that MOM wear-rates could rise as high as 60–70mm3/year in short-term failures (Morlock, 2008). In contrast, some MOM and ceramic-on-ceramic (COC) devices of 1970's era performed admirably over 2–3 decades (Schmalzreid, 1996; Shishido, 2003). While technology has aided analysis of short-term MOM and COC failures (Morlock 2008; Lord 2011), information on successful THA remains scant. Lack of long-term data creates difficulties in setting benchmarks for simulator studies and establishing guidelines for use in standards. In this study we compared clinical and wear histories for a 30-year MOM and a 32-year COC to establish such long-term, wear-rates.
The McKeeTM retrieval was cemented and made 100% of CoCr alloy (Fig. 1a). This patient had a right femoral fracture at 47 years of age, treated by internal-fixation, which failed. Her revision with a Judet implant also failed, leaving her right hip as a Girdlestone. At the age of 68, she had a McKee THA implanted in left hip, and used it until almost 98 years of age (Campbell, 2003). The COC case was a press-fit AutophorTM THA, head and cup made of alumina ceramic, with the only metal being the CoCr stem (Fig. 1c). This was implanted in a female patient 17-years of age active in sports (water-skiing). This modular THA was revised 32-years later due to hip pain from cup migration. Wear on these implants was identified by stereomicroscopy and stained red for photography (Fig. 1). Cup-to-neck impingement was denoted by circumferential neck notching, roughness was assessed by interferometry, and wear determined by CMM (Lord, 2011).
McKee head wear covered 1092mm2 area (Figs. 1a, 2: hemi-area ratio 58%). There was no stripe wear and head roughness was 36nm (Ra). Cup wear covered an area of 1790mm2 (hemi-area 63%). Circumferential damage was noted on the supero-posterior femoral neck with scuff marks also on posterior collar (Fig. 2c). Head and cup wear amounted to 37.7 and 25.2mm3, respectively. Total MOM wear was 62.9mm3, indicating a wear-rate of 2.1mm3/year.
Ceramic head wear consisted of two circular patterns (Fig. 1c), the major one of area 1790mm2 (hemi-area 79%). No wear stripes were identified. Non-worn and extensively worn surfaces had roughness (Ra) 17nm and 123nm, respectively. The cup showed 360o circumferential arc of rim wear with a small, non-wear zone inferiorly (Fig. 1c). Gray metallic transfer was evident, EDS revealing Co and Cr (Fig. 3a). Head and cup wear volumes were 77.2 and 54mm3, respectively. Total COC wear amounted to 131.2mm3 indicating a wear-rate of 4.1mm3/year.
These two THA functioned successfully over 3 decades. The McKee retrieval had minor signs of impingement but no adverse “stripe wear”. This MOM performed satisfactorily due to good positioning and patient's advanced age (68 to 98Yrs of age). The COC patient was 17 years of age at index surgery and active. The ceramic cup showed 360o of edge wear, CoCr transfer and a COC wear-rate double that of the MOM retrieval. Thus the high ceramic wear-resistance protected this youthful patient.
Use of “CPR” distance has proven clinical utility in stratifying risks of “steep cups” in MOM failures.[1, 4] The CPR indice has been defined as distance between point of intersection of the hip reaction force (Fig. 1: vector-R in contact patch) and closest point on the inner cup rim.[4] However, the CPR indice has limitations. It assumes that, (1) the hip load-vector (R) will be angled 10°-medial in all patients, (2) the contact patch will be same size in all patients, and (3) the contact patch will be invariant with increasing MOM diameter. In contrast it is known from retrieval studies that larger MOM bearings created much larger wear patches.[3] Furthermore, the size of cup wear-patches in MOM bearings can now be estimated with some certainty using simulator wear data.[2] Our objective was to develop an algorithm that would predict (i) contact-patch size for all cup designs and diameters, (ii) determine actual margin of safety (Fig. 1: MOS) for different laterally-inclined cups, and (iii) predict critical test angles for “steep” cup studies in hip simulators.
The ‘CPR-distance’ (Fig. 1) is subtended by the CPA angle, but the true margin of safety is the distance from edge of wear patch to cup rim, indicated here by MOS angle. In this algorithm the wear-patch size (CAP angle) is a key parameter, as derived from MOM wear data (Fig. 2). The CAP angles decrease with increasing MOM diameter, as defined by strong linear trend (R=0.998). The key 2nd parameter is cup inclination angle that juxtaposes the wear-pattern to the cup rim (CCI). For hemispherical cups the critical inclination is given by
Applicability of the new algorithm can be visualized with a 48mm MOM (cup ABA=160o) run in a standard simulator test (Fig. 3). The algorithm predicts that with cup at 40o inclination there is good margin of safety (11.8o), representing a 5mm distance. This would become much reduced at CIA = 50o, while true edge-wear appears at the 60o test inclination (Fig. 3. EW = −8.2o). For clinical comparison with ‘CPR-distances’, the algorithm shows that positioning the wear patch 10o-medial (Figs. 1, 3) has margin of safety averaging 11.5 mm (MOS) less than was predicted by the CPR indice. While CPR has shown clinical utility, it is believed that compensating for actual size of cup wear-patterns provides a more realistic risk assessment for different MOM diameters in different cup positions. Thus the new algorithm permits accurate depiction of cup wear-patterns for use in both clinical and simulator studies.
Any arthroplasty that offers superior function needs to be assessed using metrics that are capable of detecting those functions. The Oxford Hip Score (OHS), the Harris Hip Score (HHS) and WOMAC are patient reported outcome measures (PROMs) with well documented ceiling effects: following hip arthroplasty, many patients are clustered close to full marks following surgery. Two recent well conducted randomised clinical trials made exactly this error, by using OHS and WOMAC to detect a differences in outcome between hip resurfacing and hip arthroplasty despite published data already showing in single arm studies that these two procedures score close to full marks using either of these PROMS.
We have already reported that patients with hip resurfacing arthroplasty (HRA) were able to walk faster and with more normal stride length than patients with well performing hip replacements. In an attempt to relate this functional superiority to an outcome measure that does not rely upon the use of expensive machinery, we developed a patient centred outcome measure (PCOM) based upon a method developed by Philip Noble's group, and the University of Arizona's Metabolic Equivalent of Task Index (MET). This PCOM allows patients to select the functions that matter to them personally against which the success of their own operation will be measured, with greater sensitivity to intensity than is achieved by the UCLA.
Our null hypothesis was that this PCOM would be no more successful than the PROMs in routine use in discriminating between types of hip arthroplasty, and that there would be no difference in gait between patients following these procedures.
From our database of over 800 patients whose gait has been assessed in the lab, we identified 22 patients with a well performing conventional THAs, and matched them for age, sex, BMI, height, preop diagnosis with 22 patients with a well performing conventional THA. Both were compared with healthy controls using the novel PCOM and in a gait lab.
Results
PROMs for the two groups were almost identical, while HRA scored higher in the PCOM. The 9% difference was significant (p<0.05). At top walking speed, HRA were 10% faster, with a 9% longer stride length, both of these metrics also reached significance.
Discussion
Function following hip replacement is very good, with high satisfaction rates, but the use of a PCOM, and objective measures of function reveal substantial inferiority of THA over THR in two well matched groups. This 9% difference is well over the 5% difference that is considered ‘clinically relevant’. When coupled with the very strong data regarding life expectancy and infection, this functional data makes a compelling case for the use of resurfacing in active adults.
Normal human locomotion entails a rather narrow base of support (BoS), of around 12cm at normal walking speeds. This relatively narrow gait requires good balance, and is beneficial, as it minimises the adduction moment at the knee. Normal knees have a slightly oblique joint line, and slight varus, which allow the normal human to walk rapidly with a narrow BoS. Patients with increased varus and secondary osteoarthritis have a broader BoS, which exacerbates the excessive load, making walking painful and ungainly.
We wondered if there would be a difference between the base of support of patients whose knee kinematics had been preserved, by retaining the native jointline obliquity and the acl, in comparison with those whose alignment had been altered to a mechanically correct ‘neutral’ alignment.
Materials and Methods
Of 201 patients measured following knee arthroplasty, 31 unicondylar patients and 35 total knee patients, with a single primary arthroplasty, and no co-morbidities, over 1 year post-operatively were identified. Two control groups of controls, a younger cohort of 112 people and 17 in an age matched older cohort.
All operations were performed by the same surgeon. The total knees were cruciate retaining devices, inserted in mechanical alignment, and the unicondylar knees were inserted retaining the native alignment and joint-line obliquity.
The gait of all subjects was analysed on an instrumented, calibrated treadmill with underlying force plates. Patients start by walking at a comfortable speed for them for 5 minutes, before the speed of the treadmill is increased at 1/2 km/h increments until maximum walking speed obtained, spending 30 seconds at each. After the flat test, it was then repeated on a downhill slope of 6°.
Base of Support is interpreted as the distance between the centre point of heel strike and toe off from one foot to that of the other.
The top walking speed in the unicondylar group was significantly greater than that of the total knee group, as we reported in 2013.
TKA patients have an average BoS of 14cm, while UKA patients and controls have a 12cm BoS. The BoS did not reduce with speed. This 2cm, or 17% increase in BoS is significant. Shapiro-Wilk tests demonstrate a normal distribution to the results, and ANOVA testing reveals a significant difference (p<0.05) within the groups between the speeds of 4.5 to 9. Post-Hoc Bonferroni testing reveal a significant difference between the TKA group and each of the other three groups.
On the downhill test (figure 1), the mean BoS in the TKA group increased to 16cm. This increase is highly significant, with a p value of <0.001, while the increase in the UKA group at higher speeds failed to reach significance, and the controls both stayed at 12cm. 6 Bi-uni knees tested acted just like the UKAs.
Discussion
A narrow base of support minimises excessive loads across the joint line. Maintenance of jointline obliquity and an ACL enables this feature to be returned to normal following uni, or bi-uni, while a well aligned TKA seems to prevent it.
Introduction
Preoperative templating of femoral and tibial components can assist in choosing the appropriate implant size prior to TKA. While weight bearing long limb roentograms have been shown to provide benefit to the surgeon in assessing alignment, disease state, and previous pathology or trauma, their accuracy in size prediction is continually debated due to scaling factors and rotated views. Further, they represent a static time point, accounting for boney anatomy only. A perceived benefit of robotic-assisted surgery is the ability to pre-operatively select component sizes with greater accuracy based on 3D information, however, to allow for flexibility in refining based on additional data only available at the time of surgery.
Methods
The purpose of this study was to determine the difference of pre-operative plans in size prediction of the tibia, femur, and polyethylene insert. Eighty four cases were enrolled at three centers as part of an Investigational Device Exemption to evaluate a robotic-assisted TKA. All patients had a CT scan as part of a pre-operative planning protocol. Scans were segmented and implant sizes predicted based on the patients boney morphology and an estimated 2mm cartilage presence. Additional information such as actual cartilage presence and soft tissue effects on balance and kinematics were recorded intra-operatively. Utilizing this additional information, surgical plans were fine tuned if necessary to achieve minimal insert thickness and balance. Data from the Preoperative CT plan sizing and final size were compared to determine the percentage of size and within one size accuracy.
Introduction
Total knee arthroplasty (TKA) is a well established treatment option for patients with end stage osteoarthritis. Conventional TKA with manual instruments has been shown to be a cost effective and time efficient surgery. While robotic-assisted operative systems have been shown to have benefits in surgical accuracy, they have also been reported to have longer surgical times. The purpose of this work was to determine surgical time and learning curve for a novel robotic-assisted TKA platform.
Methods
Eighty-five subjects underwent robotic-assisted TKA by one of three investigators as part of an FDA and IRB approved Investigational Device Exemption (IDE). All patients received a cruciate retaining total knee implant system. Intra-operative safety, Western Ontario and McMaster Universities Arthritis Index (WOMAC) and Knee Society Scores (KSS) were collected pre-operatively and at three month follow-up. In addition, surgical times were collected as part of a TKA work flow. To identify activities related to surgical steps required for robotic procedures specific time stamps were determined from the system. Capture of the hip center to final bone cut was used to define case time and identify robotic learning curve. Descriptive statistics were used to analyze results.
INTRODUCTION
Bicompartmental knee arthroplasty (BKA) is an alternative to total knee arthroplasty (TKA) for degenerative joint disease when present in only two compartments. BKA spares the cruciate ligaments and preserves bone in the healthy compartment, possibly leading to better knee kinematics and clinical outcomes when compared to TKA. While BKA is a technically demanding procedure when performed with manual instrumentation, robotic assistance allows for accurate implant placement and soft tissue balancing of the joint. Robotic unicompartmental knee arthroplasty (UKA) has shown favorable clinical outcomes and survivorship at short term (2 year) follow up compared to manual UKA. The purpose of this study is to evaluate the short term functional outcomes and survivorship of patients undergoing robotically assisted BKA.
METHODS
45 patients (48 knees) were identified in an initial and consecutive single surgeon series receiving robotically assisted BKA to correct disease in the medial and patellofemoral compartments. As part of an IRB approved study, every patient in the series was contacted at a minimum two year (±2 months) follow up and asked a series of questions to determine implant survivorship and functional outcomes (using the patient portion of the Knee Society Score). 9 patients were lost to follow up and 1 patient was deceased. 35 patients (38 knees) at a minimum two year follow up enrolled in the study for an enrollment rate of 79%. There are 22 male patients and 13 female patients; the average age at time of surgery is 67.0 ± 6.8 and the average BMI is 29.5 ± 4.6. Five patients in this series also qualified for a 5 year follow up assessment.
Introduction
There is a demand for longer lasting arthroplasty implants driving the investigation of novel material combinations. PEEK has shown promise as an arthroplasty bearing material, with potentially relatively bio inert wear debris [1]. When coupled with an all-polyethylene tibial component this combination shows potential as a metal-free knee. In this study, the suitability of PEEK Optima® as an alternative to cobalt chrome for the femoral component of total knee replacements was assessed using experimental knee wear simulation under two kinematic conditions.
Methods
Three cobalt chrome and three injection moulded PEEK Optima® (Invibio Biomaterial Solutions, UK) femoral components of similar geometry and surface roughness (mean surface roughness (Ra) ∼0.02µm) were coupled with all-polyethylene GUR1020 (conventional, unsterilised) tibial components in a 6 station ProSim knee simulator (Simulation Solutions, UK). 3 million cycles (MC) of wear simulation were carried out under intermediate kinematics (maximum anterior-posterior (AP) displacement 5mm) followed by 3MC under high kinematics (AP 10mm) [2] with 25% serum as the lubricant. The wear of the tibial component was assessed gravimetrically. At each measurement point, the surface roughness of the femoral components was determined using contacting profilometry and throughout testing, the bulk lubricant temperature was monitored close to the articulating surfaces.
Statistical analysis was carried out using ANOVA, with significance at p<0.05.
The charateristic of Brexis short stem are:
-Minimal bone loss -Physiologic load transmission -Solid anchorage -Biocompatibility and osteointegration -Polished brilliant in use
Introduction
Computer-assisted orthopaedic surgery (CAOS) provides great value in ensuring accurate, reliable and reproducible total knee arthroplasty (TKA) outcomes [1,2]. Depending on surgeon preferences or patient factors (e.g. BMI, ligament condition, and individual joint anatomy), resection planning (guided adjustment of cutting blocks) is performed with different knee flexion, abduction/adduction (ABD/ADD) and internal/external (I/E) rotation angles, potentially leading to measurement errors in the planned resections due to a modified tracker/localizer spatial relationship. This study assessed the variation in the intraoperative measurement of the planned resection due to leg manipulation during TKA, and identified the leg position variables (flexion, ABD/ADD, and I/E rotation) contributing to the variability.
Materials and Methods
Computer-assisted TKA (ExactechGPS®, Blue-Ortho, Grenoble, FR) was performed on a neutral whole leg assembly (MITA knee insert and trainer leg, Medial Models, Bristol, UK) by a board-certified orthopaedic surgeon (BH) at his preferred leg flexion, ABD/ADD, and I/E rotation angles. A cutting block was adjusted and fixed to the tibia, targeting the resection parameters listed in Table 1A. An instrumented resection checker was then attached to the cutting block to measure the planned resection at the same leg position (baseline). Next, the surgeon moved the leg to 9 sampled positions, representing typical leg position/orientation associated with different steps during TKA [Table 1B]. The planned resection was tracked by the CAOS system at each leg position.
Tibial resection parameters at each sampled position were compared to the baseline. Regression was performed to identify the variables (flexion, ABD/ADD, I/E rotation) that significantly contribute to the measured variation (p<0.05).
Introduction
Evaluations of Computer-assisted orthopaedic surgery (CAOS) systems generally overlooked the intrinsic accuracy of the systems themselves, and have been largely focused on the final implant position and alignment in the reconstructed knee [1]. Although accuracy at the system-level has been assessed [2], the study method was system-specific, required a custom test bench, and the results were clinically irrelevant. As such, clinical interpolation/comparison of the results across CAOS systems or multiple studies is challenging. This study quantified and compared the system-level accuracy in the intraoperative measurements of resection alignment between two CAOS systems.
Materials and Methods
Computer-assisted TKAs were performed on 10 neutral leg assemblies (MITA knee insert and trainer leg, Medial Models, Bristol, UK) using System I (5 legs, ExactechGPS®, Blue-Ortho, Grenoble, FR) and System II (5 legs, globally established manufacturer). The surgeries referenced a set of pre-defined anatomical landmarks on the inserts (small dimples). Post bone cut, the alignment parameters were collected by the CAOS systems (
The modern era of hip resurfacing was initiated over two decades ago to address the poor results of existing hip replacement devices in young patients. High failure rates have been reported with certain resurfacings. This is a 1 to 17-year review of a single surgeon series of resurfacings in patients under the age of 50 years.
Between July 1997 and June 2014, 3627 hip resurfacing arthroplasties were implanted at our Centre in 2878 patients using a posterior approach. Of these 863 patients (1063 hips, 754 in men and 309 in women) were under the age of 50 years at the time of operation. They were followed up with postal questionnaires for up to 10 years through independent Outcomes Centres initially and are currently followed up by our own Centre.
18 patients (24 hips) died 5.9 (0.02 – 11) years after surgery due to unrelated causes, including one patient (1 hip) who was revised and died 5 years after revision. Mean follow-up is 11.9 years (0.8 to 17.8 years). There were 22 revisions altogether (2.1%) at a mean of 6.2 years (0.01 to 14.6 years) including one malpositioned cup in a female patient with developmental dysplasia who dislocated post-operatively and had to be repositioned. 9 hips failed from collapse of the femoral-head and 3 hips from femoral-neck fractures, giving rise to 12 femoral failures in all. There were six deep infections and three bearing-related failures including one pseudotumour, one for osteolysis and one for unexplained pain with neither metallosis nor pseudotumour.
With revision for any reason as the end-point Kaplan-Meier survival analysis showed 98.9%, 98.6% and 97.2% implant survival at 5, 10 and 17 years. Men had better survival (99.1% and 98.1% at 10 and 17 years respectively) than women (97.3% and 95.3%).
17-year cumulative revision rates were higher in patients with a pre-operative diagnosis of dysplasia (6.1%) and AVN (7.6%) compared to all other diagnoses combined (1.5%). Patients with osteoarthritis had the best results (99.5%, 99.3%, 98.4% at 5, 10 and 17 years respectively).
Our study shows that resurfacing arthroplasty is a viable option for hip arthritis in the young with a low incidence of wear-related failures in the long-term.
Blood metal ion sampling can help detect poorly functioning metal-on-metal hip arthroplasties (MoMHA's) requiring revision. Little is known about the variation in these levels following bearing exchange. This study aimed to determine the changes that occur in blood and urine metal ion concentrations following MoMHA revision.
A single-centre prospective cohort study was undertaken between 2005 and 2012 of patients with failing large-diameter MoMHA's and high blood metal ions requiring revision to non-metal-on-metal articulations. All patients had normal renal function. Whole blood and urine were collected for metal ion analysis preoperatively and regularly following revision.
Twenty-three MoMHAs (21 hip resurfacings and 2 total hip arthroplasties; mean age 56.0 years and 65% female) were revised at a mean time of 7.9 years (range 2.0–14.5 years) from primary surgery. All revisions were performed by the senior author using primary total hip implants (12 ceramic-on-polyethylene bearings, 10 oxinium-on-polyethylene bearings, and 1 metal-on-polyethylene bearing implanted). Mean (range) metal ion concentrations pre-revision were: blood cobalt 13.9µg/l (1.32–74.7µg/l), blood chromium 8.9µg/l (1.29–57.3µg/l), urine cobalt 104.6µg/24 hours (4.35–747.3µg/24 hours), urine chromium 33.2µg/24 hours (4.39–235.4µg/24 hours). After revision the mean metal ion concentrations (percentage of pre-revision values) were: blood cobalt at 2 days=10.7µg/l (77%), 6 days=7.7µg/l (55%), 2 months=3.4µg/l (24%), 1 year=1.0µg/l (7%), 2 years=0.42µg/l (3%); blood chromium at 2 days=8.7µg/l (98%), 6 days=5.5µg/l (62%), 2 months=2.2µg/l (25%), 1 year=1.5µg/l (16%), 2 years=0.97µg/l (11%); urine cobalt at 2 days=31.9µg/24 hours (30%), 6 days=21.5µg/24 hours (21%), 2 months=6.1µg/24 hours (6%), 1 year=0.99µg/24 hours (1%), 2 years=0.61µg/24 hours (1%); urine chromium at 2 days=34.4µg/24 hours (103%), 6 days=15.8µg/24 hours (48%), 2 months=9.3µg/24 hours (28%), 1 year=2.8µg/24 hours (8%), 2 years=1.9µg/24 hours (6%).
Following MoM revision cobalt levels decline rapidly in an exponential pattern with a single rate of decay through the 2 year period, reaching reference levels within the first year. Chromium follows a similar pattern but starts lower and takes longer. Renal response to cobalt returns to reference level within days of revision.
High short-term failure rates have been observed with a number of metal-on-metal (MoM) hip designs. Most patients require follow-up with blood metal ions, whichprovide a surrogate marker of in-vivo bearing wear. Given these results are used in clinical decision making it is important values obtained within and between laboratories are reproducible.
To assess the intra-laboratory and inter-laboratory variability of blood metal ion concentrations analysed by four accredited laboratories.
Whole blood was taken from two participants in this prospective study. The study specimen was obtained from a 42 year-old female with ceramic-on-ceramic hip arthroplasty failure resulting in unintended metal-on-ceramic wear and excessively high systemic metal ion levels. The control specimen was from a 52 year-old healthy male with no metal exposure. The two specimens were serially diluted to produce a total of 25 samples with different metal ion concentrations in two different anticoagulants each. Thus 50 samples were sent blinded in duplicate (total 100) to four accredited laboratories (A, B, C, D) to independently analyse blood metal ion concentrations. Ten commercially available reference specimens spiked with different amounts of metal ions were also obtained with known blood metal ion concentrations (range for cobalt 0.15µg/l-11.30µg/l and chromium 0.80µg/l to 37.00µg/l) and analysed by the four laboratories.
The intra-laboratory coefficients of variation for repeat analysis of identical patient specimens were 7.32% (laboratory A), 4.64% (B), 7.50% (C), and 20.0% (D). The inter-laboratory variability for the analysis of all 25 samples was substantial. For the unmixed study specimen the laboratory results ranged from a cobalt of 263.7µg/l (D) to 525.1µg/l (D) and a chromium of 13.3µg/l (D) to 36.9µg/l (A). For the unmixed control specimen the laboratory results ranged from a cobalt of 0.13µg/l (B) to 0.77µg/l (D) and a chromium of 0.13µg/l (D) to 7.1µg/l (A). For one of the mixed specimens the laboratory results ranged from a cobalt of 12.50µg/l (A) to 20.47µg/l (D) and a chromium of 0.73µg/l (D) to 5.60µg/l (A). Similar inter-laboratory variation was observed for the other mixed samples. The true mean (standard deviation) of the 10 commercial samples was 4.48µg/l (4.20) for cobalt and 8.97µg/l (10.98) for chromium. This was similar to the values obtained by all four laboratories: mean (standard deviation) cobalt ranged from 3.54µg/l (3.17) in laboratory A to 4.35µg/l (4.13) in laboratory D, and chromium ranged from 7.76µg/l (9.50) in laboratory B to 9.55µg/l (9.16) in laboratory A.
When testing patient samples, large variations existed both between and within four laboratories accredited to perform analysis of blood metal ion concentrations. However, this was not the case when assessing commercially spiked samples which are regularly used to validate laboratory testing. This is of great clinical concern and could lead clinicians to either recommend unnecessary revision or delay surgery, with both having the potential to adversely affect patient outcomes. It is recommended that laboratories use patient samples to assess the accuracy and reproducibility of the analyses performed. This may also assist in explaining the variations observed in this study.
Metal-metal surface replacement (MoMSRA) is increasingly used in the young. Systemic metal ion release and its effects cause concern. Do metal ions cross the placenta in pregnant women with potential mutagenic effects? The hypothesis is that metal ions pass freely through the placenta and there is no difference in maternal and cord metal levels.
This is a controlled cross-sectional study of women with MoMSRA. (n=25, mean age 32years, implantation 60months, 3 bilateral). The control group were 24 subjects with no metallic implant and not receiving cobalt/chromium supplements, mean age 31years. No patient was known to have renal failure. Whole blood specimens were obtained before delivery/ fluid-infusion and Cord blood specimens immediately after delivery.
Cobalt and chromium were detectable in all specimens in both cohorts. In the control group, the difference between maternal and cord levels was only 5 to 7% indicating free passage. Study group cord levels were significantly lower than maternal cobalt, p<0.05 and chromium p<0.0001 thus rejecting the null hypothesis.
The differences between maternal and cord metal ions in the controls indicate that normally the placenta allows an almost free passage of metal ions. The relative levels of metal ions in the maternal and cord blood in the study group reveal that the placenta exerts a modulatory effect on metal transfer.
Objectives
To examine mortality and revision rates among patients with osteoarthritis undergoing hip arthroplasty and to compare these rates between patients undergoing cemented or uncemented procedures and to compare outcomes between men undergoing stemmed total hip replacements and Birmingham hip resurfacing.
Main outcome measures
Hip arthroplasty procedures were linked to the time to any subsequent mortality or revision (implant failure). Flexible parametric survival analysis methods were used to analyse time to mortality and also time to revision. Comparisons between procedure groups were adjusted for age, sex, American Society of Anesthesiologists (ASA) grade, and complexity.
Post-operative swelling and wound ooze following primary Total Knee Replacement (TKR) can lead to complications such as wound infection, and delays in achieving adequate range of motion. The aim of the study is to examine the effectiveness of using an additional layer of a self-adherent elastic wrap (CobanTM) in reducing post-operative swelling and wound ooze after Primary TKR.
Seventeen pairs of patients who had had a primary TKR were studied in a prospective, age and gender-matched cohort study. Half of the patients had wool and crepe dressing (Group A) and the other half with an additional layer of CobanTM dressing (Group B), applied to the wound. Limb circumference was measured at three levels (below knee, knee and above knee) preoperatively and 3 consecutive days post-operatively. The area of wound ooze was measured using AutoCAD software.
Group B showed a significant reduction difference in the mean of post-operative limb circumference at above knee level (3.2 vs 4.9 cm.
Within the relative small size of this study, there appeared a significant reduction in post-operative limb swelling and wound ooze when using CobanTM in TKR. It is promising preliminary results, however the study groups must be extended.
Background
KAR™ prosthesis was introduced following the success of Corail® femoral stem to tackle difficult revision cases (Paprosky type1, 2a, 2b and 3a). The ARTO group reported a success rate of 94% at 17 years follow-up. Only two independent studies reported similar success rate to date.
Purpose
To analyse the short-term performance of the KAR™ prosthesis used in our unit.
Purpose
External rotation of the femoral component is one factor that favors a satisfactory clinical result. New technologies have been developed to precisely implant the components of a total knee arthroplasty, including computer-assisted surgery (CAS) and patient-specific instruments (PSIs). The aim of this study was to compare the precision of CAS and PSIs when determining the orientation of the femoral component.
Methods
A total of 65 patients operated on in 2008 with CAS had pre- and post-operative computed tomography (CT) in which the posterior condylar angle (PCA) was measured. The same pre- and post-operative measurements were performed for 27 patients operated on in 2010 with the assistance of PSI. For both populations, the antero-posterior femoral cuts were directed to implant the femoral component 3° of external rotation from the pre-operative posterior condylar line (PCL).
Introduction
A previous computational study on an all-polymer PEEK-on-UHMWPE total knee replacement implant showed improved periprosthetic bone loading, compared to a conventional implant [1]. That study used a simulated gait cycle to determine distal loading, but a patella was not included. Substantial distal decrease of bone remodeling stimulus was found, in accordance with previous reports [2], but it was not consistent with other clinical and post-mortem DEXA results, which found the largest loss of bone stock in the anterior region [3,4]. As patellofemoral forces are relatively low during gait compared to squatting, we simulated a deep squat, expecting that a high-demand activity would provide similar indications of bone loss as literature [3,4]. Consequently, we applied both high tibiofemoral and patellofemoral loads, to provide more insight in the potential benefits of a new PEEK-Optima® femoral component on periprosthetic bone stock.
Methods
We adopted a deep squat finite element model from Zelle et al. and included quasi-static deep flexion and load sharing at the posterior condyles [6]. A new implant design was inserted, with three variations in material properties: intact, CoCr and PEEK. The stiffness of the femoral elements was mapped from CT and applied to either the cut femur only (CoCr and PEEK) or the entire femoral construct (intact). The strain energy density (SED) was evaluated in the periprosthetic region as a measure for bone remodeling stimulus. To examine the effects of the entire exercise, SED values were integrated over all increments.
Background and aim
Arthroplasty registries and consecutive series indicate significantly worse results of conventional metal-on-polyethylene total hip arthroplasty (THA) in patients younger than 50 years compared to older patients, with inferior clinical outcomes and 10-year survivorship ranging between 70 and 90%. At our institution, patients under 50 needing a THA receive either a metal-on-metal hip resurfacing (MoMHRA) or a ceramic-on-ceramic (CoC)THA. In order to evaluate the outcome of these options at minimum 10 years, we conducted a retrospective review of all MoMHRA and CoCTHA with more than 10 years follow-up implanted in patients under 50.
Methods
From a single surgeon patients’ prospective database, we identified all consecutive THA performed before May 2005 in patients under 50. All patients are contacted by phone and asked to present for a clinical exam and patient reported outcome questionnaires, standard radiographs and metal ion measurements unless the hip arthroplasty has been revised. Complications and reasons for revision are noted. Kaplan-Meier survivorship is analysed for the whole cohort and sub-analysis is performed by type hip arthroplasty, gender, diagnosis and component size.
Introduction
Revision of total hip replacements (THRS) is predominantly due to aseptic loosening, pain and infection [1]. The current method used to address the risk of infection is to administer antibiotics and to include antibacterial agents into bone cement (if used) and on implant coatings [2–4]. Currently, silver (Ag) coatings have only been applied to titanium hip stems [3]. Cobalt chromium alloy (CoCr) is a widely used orthopaedic alloy which is commonly used as a bearing surface; revisions of joints using this material often describe adverse reactions to the particulate wear debris [1]. This study considers an Ag containing CrN based coating on a CoCr substrate with the aim to reduce cobalt (Co) release and promote antibacterial silver release.
Methods
Silver Chromium Nitride (CrNAg) coatings were developed and applied onto the bearing surfaces of 48 mm diameter metal-on-metal THRs. Three coatings were evaluated: high Ag at the surface (CrNAg+), low Ag at surface (CrNAg-) and uniform Ag (CrNAg=). All bearings were tested under ISO 14242-3 conditions for 0.17 million cycles (mc) representing approximately 2 months use
Modeling the kinetic effects of the soft tissue structures is a major challenge for dynamic simulation of knees and other joints. We describe a technique whereby a multi-fiber ligament model is evolved to reproduce accurately the passive kinetics of a knee joint. The passive motion can be derived from patient-specific motion capture data. It may also be derived in-silico from a desired articular surface geometry, for example an implant or a surface model acquired by radiography. The technique operates by optimizing the tibial ligament insertion sites to minimize the change in strain energy through a specified range of motion. It is believed that the ligament model so produced is valuable for loaded kinetic and kinematic joint studies as well. The results therefore may be used to inform implant positioning during surgical planning.
Malpositioning still occurs in total hip arthroplasty (THA). As a result of mal-orientation, THA bearing can be subjected to edge loading. The main objective of the study was to assess if the wear rate of ceramic-on-ceramic and metal-on-polyethylene increases under edge loading conditions and to determine which of the most commonly used hip bearings is the most forgiving to implant mal-orientation.
Materials and methods
Two different polyethylenes (UHMWPE and vitamin E blended HXLPE) and ceramics (pure aluminum PAL and alumina-toughened zirconia ATZ) were tested with a hip simulator and compared to metal-on-metal results. The inclination angle was selected at 45°, 65° and 80°. In addition, the ceramic-on-ceramic barings were tested at conditions that produced microseparation.
Results
Contrary to metal-on-metal that is highly susceptible to edge loading, the wear rate of ceramic-on-ceramic and metal-on-polyethylene articulations does not increase with increasing cup inclination. In fact, the polyethylenes showed a contra-intuitive behaviour as its wear rate decreased slightly but significantly with increasing inclination angle. This behaviour can be explained when looking closely at the contact stresses and areas. (Figure 1 shows the wear area of the vitamin E blended HXLPE at 45° and figure 2 at 80° cup inclination).
The newest biomaterials, vitamin E blended HXLPE and ATZ, showed markedly lower wear rates compared to their conventional counterparts, UHMWPE and PAL. The ATZ ceramic-on-ceramic articulation showed the lowest wear rate (even when microseparation is included) of all tested pairings, but the new vitamin-doped HXLPE seems to be the most forgiving materials when it comes to implant mal-orientation. It shows low wear rate even at an extremely high cup inclination angle. Therefore, a surgeon that discovers a mal-positioned polyethylene cup at the first post-op X-ray will not need to worry unduly about increased wear (but “only” about a potential dislocation).
Introduction
The vascular anatomy of the femoral head and neck has been previously reported, with the primary blood supply attributed to the deep branch of the Medial Femoral Circumflex Artery (MFCA). This understanding has led to development of improved techniques for surgical hip dislocation for multiple intra-capsular hip procedures including Hip Resurfacing Arthroplasty (HRA). However, there is a lack of information in the literature on quantitative analysis of the contributions of the Lateral Femoral Circumflex Artery (LFCA) to femoral head and neck. Additionally, there is a lack of detailed descriptions in the literature of the anatomic course of the LFCA from its origin to its terminal branches.
Materials & Methods
Twelve fresh-frozen human pelvic cadaveric specimens were studied (mean age 54.3 years, range 28–69). One hip per specimen was randomly assigned as the experimental hip, with the contralateral used as a control. Bilateral vascular dissection was performed to cannulate the MFCA and LFCA. Specimens were assigned as either LFCA-experimental or MFCA-experimental. All specimens underwent a validated quantitative-MRI protocol: 2mm slice thickness with pre- and post- MRI contrast sequences (Gd-DTPA diluted with saline at 3:1). In the LFCA-experimental group 15ml of MRI contrast solution was injected into the LFCA cannula. In the MFCA-experimental group 15ml of contrast solution was injected into the MFCA cannula. On the control hip contrast solution was injected into both MFCA and LFCA cannulas, 15ml each (30ml total for the control hip). Following MRI, the MFCA and LFCA were injected with polyurethane compound mixed with barium sulfate (barium sulfate only present in either MFCA or LFCA on each hip). Once polymerization had occurred, hips underwent thin-slice CT scan to document the extra- and intra-capsular course of the LFCA and MFCA. Gross dissection was performed to visually assess all intra-capsular branches of both the MFCA and LFCA and assess for extravasation. Quantitative-MRI analysis was performed based on Region of Interest (ROI) assessment. Femoral heads were osteotomized at the level of the largest diameter proximal to the articular margin and perpendicular to the femoral neck, for placement of a 360° scale. Measurements using the 360° scale were recorded. For data processing, we used right-side equivalents and integrated our 360° data into the more commonly used imaginary clock face.
The aim was to identify the acetabular center, fix the acetabular implant, and reconstruct the hip rotation center using the residual Harris fossa and acetabular notch as anatomical markers during revision hip arthroplasty. Osteolysis is commonly found in the acetabulum during hip arthroplasty revision. It causes extensive defects and malformation of the anatomical structure, making correct fixation of a hip prosthesis difficult. We studied the relations of the anatomical positions between the Harris fossa and acetabular notch and the acetabular center (Fig. 1). Vertical distance from the hip rotation center to the teardrop connection and horizontal distance from the hip rotation center to the teardrop were measured on preoperative and postoperative radiographs. Vertical distance increased from 14.22±3.39 mm preoperatively to 32.64±4.51 mm postoperatively (t=3.65, P<0.05) and the horizontal distance from 25.13±3.46 mm to 32.87±4.73 mm (t=2.72, P<0.05). Altogether, 28 patients underwent revision hip arthroplasty based on the Paprosky classification for bone loss. The anatomical hip center was identified using the residual Harris fossa and acetabular notch as anatomical markers during revision hip arthroplasty. Based on these relations, we were able to place the hip prosthesis correctly. After surgery, restoration of the anatomical hip center was accomplished based on data obtained from radiographs(Fig.2 and Fig.3).
Introduction
By all developments of new technologies on the improvement of the Total Knee implantation, the discussion about the optimum Alignment is in full way. Besides, is to be considered, that Alignment contains not only static, but also dynamic factors and beside the frontal plan also the sagittal plan as well as in particular the rotation in femur and tibia have a great importance for the outcome after TKR. However, beside the bone alignment, the kapsulo-igamentous structures also play an important role for the results after TKR. If a Varus-Malalignment was valid, in the past the „older” literature described it as a big risk factor for pain, less function and durability. However, in the present literature, we discuss more and more about the optimum Alignment during TKR. In particular, newer publications show no interference of the durability with coronar Alignment also outside from 3 °, also the score results and patient's satisfaction seem to deliver no worse results with slight untercorrection of the varus alignment. Some publications described even better score results and Patient satisfaction with slight untercorrection. Condition for it is probably an exact balancing of the extension and flexion gap.
Material and method
With a new developed instruments it was examined with a tibia and extensions-Gap-First-Technique, to what extent a correction of the AMA opposed after digital planning within from 3 ° in distal femur a balancierung of the extension gap could be reached under avoidance of 3° releases with a varusarthritis oft the knee. 103 directly knee arthroplasties following on each other were selected with Varus-OA without exclusion criteria.
Background
Despite the success of total knee arthroplasty (TKA) restoration of normal function is often not achieved. Soft-tissue balance is a major factor leading to poor outcomes including malalignment, instability, excessive wear, and subluxation. Mechanical ligament balancers only measure the joint space in full extension and at 90° flexion. This study uses a novel electronic ligament balancer to measure the ligament balance in normal knees and in knees after TKA to determine the impact on passive and active kinematics.
Methods
Fresh-frozen cadaver legs (N = 6) were obtained. A standard cruciate-retaining TKA was performed using measured resection approach and computer navigation (Stryker Navigation, Kalamazoo, MI).
Ligament balance was measured using a novel electronic balancer (Fig 1, XO1, XpandOrtho, Inc, La Jolla, CA, USA). The XO1 balancer generates controlled femorotibial distraction of up to 120N. The balancer only requires a tibial cut and can be used before or after femoral cuts, or after trial implants have been mounted. The balancer monitors the distraction gap and the medial and lateral gaps in real time, and graphically displays gap measurements over the entire range of knee flexion. Gap measurements can be monitored during soft-tissue releases without removing the balancer.
Knee kinematics were measured during active knee extension (Oxford knee rig) and during passive knee extension under varus and valgus external moment of 10Nm in a passive test rig.
Sequence of testing and measurement:
Ligament balance was recorded with the XO1 balancer after the tibial cut, after measured resection of the femur, and after soft-tissue release and/or bone resection to balance flexion-extension and mediolateral gaps. Passive and active kinematics were measured in the normal knee before TKA, after measured resection TKA, and after soft-tissue release and/or bone resection to balance flexion-extension and mediolateral gaps.
INTRODUCTION
Deformation of modular acetabular press-fit shells is of much interest for surgeons and manufacturers. Initial fixation is achieved through press-fit between shell and acetabulum with the shell mechanically deforming upon insertion. Shell deformation may disrupt the assembly process of modular systems and may adversely affect integrity and durability of the components and tribology of the bearing. The aim of the study was to show shell deformation as a function of bone and shell stiffness.
METHODS
The stiffness of the generic shells was determined using a uniaxial/ two point loading frame by applying different loads, and the change in dimension was measured by a coordinate measurement machine (CMM). Cadaver lab deformation measurements were done before and after insertion for 32 shells with 2 wall thicknesses and 11 shell sizes using the ATOS Triple Scan III (ATOS) optical system previously validated as a suitable measurement system to perform those measurements. Multiple deformation measurements per cadaver were performed by using both hip sides and stepwise increasing the reamed acetabulum by at least 1 mm, depending on sufficient residual bone stock. The under-reaming was varied between 0mm and 1mm, respectively. From the deformations, the resulting forces on the shells and bone stiffness were calculated assuming force equilibrium as well as linear-elastic material behaviour in each point at the rim of the shell.
Background
Robotics assisted surgery are tools that provide successful biomechanical reconstruction of the hip. We compare the accuracy of cup placement in the safe zones described by Lewinnek et al. and Callanan et al., leg length discrepancy (LLD) and global offset (GO) measurement in total hip arthroplasty (THA) using five diferent image guided techniques performed by six diferent surgeons.
Methods
Between June 2008 and April 2014, 2330 THRs were performed by six different surgeons. Ninety-three (4.69%) patients underwent robotic-assisted THA anterior approach, 135 (6.8%) had robotic-assisted THA posterior approach, 942 (47.5%) patients underwent fluoroscopic guided THA anterior approach, 708 (35.7%) had THA without guidance using posterior approach, 43 (2.1%) patients underwent navigation-guided anterior approach and 59 (2.9%) patients underwent radiographic-guided posterior approach THAs (Figure 1).
Background
Preservation of acetabular bone during primary total hip arthroplasty (THA) is important, because proper stability of cementless acetabular cup during primary THA depends largely on the amount of bone stock left after acetabular reaming. Eccentric or excessive acetabular reaming can cause soft tissue impingement, loosening, altered center of rotation, bone-to-bone impingement, intraoperative periprosthetic fracture, and other complications. Furthermore, loss of bone stock during primary THA may adversely affect subsequent revision THA.
Questions/Purposes
We sought to compare the conventional THA (CTHA) approach to robotic-guided THA (RGTHA) to determine which of these techniques preserves more acetabular bone, as interpreted from the size of the acetabular component compared with the size of the native femoral head.
The purpose of this study was to determine the survivorship for a MOM implant series performed by a single community surgeon followed using a practical clinical model. A retrospective cohort of 104 primary MOM THA procedures (94 patients) were all performed by one surgeon at three local hospitals now with 10–13 years follow-up. Sixteen patients are deceased and 16 patients have been lost to follow-up. In the remaining 62 patients, 8 are bilateral providing a total of 70 THA for study. The clinical follow-up model included: hip scores, X-rays, ultrasound, and metal ion concentrations (Co, Cr, Ti). Due to the diversity of patient location, a variety of clinical labs were utilized for metal ions. Statistical methods included Kaplan-Meier survival curve and One-way ANOVA. Hip scores were available for 70 THA and of these 61 had a hip score (HHS) above 80 (87%). X-rays were available for 49 hips and of these 38 (78%) had lateral/version angles in the safe zone (Fig 1: inclination ≤ 55 and anteversion ≤ 35). Thirty-eight ultrasound exams were performed and of these three yielded fluid collections (8%). Metal ion concentrations were documented in 39 of 62 patients (63%, either serum or whole blood). Six outliers were identified with high concentrations of metal ions (Fig 2); Co 0.3–143.9 ppb (median 3.6), Cr 0.2–200.3 ppb (median 2.2) and Ti 2-110 ppb (median 54). Six patients were revised by the original surgeon. Three of six with elevated ions were documented as wear problems and the other three were revised for infection, femur fracture and metal-ion sensitivity. The survivorship of 92.5% at 10 years (Fig. 3) may be partly due to the exclusive use of antero-lateral approach performed by one surgeon with 78% of cups well placed and the MOM design used exclusively.
This study presents an unusual recurrent case of pigmented villonodular synovitis (PVNS) around a ceramic-on-metal (COM) hip retrieved at 9-years. PVNS literature relates to metal-polyethylene and ceramic-ceramic bearings. Amstutz reported 2 cases with MOM resurfacing and Xiaomei reported PVNS recurring at 14 years with metal-on-polyethylene THA. Friedman reported on PVNS recurrence in a ceramic THA. Ours may be the first reported case of recurrent PVNS of a ceramic-on-metal articulation.
This young female patient (now 38-years of age) had a total hip replacement in 2006 for PVNS in her left hip. In her initial work-up, this case was presumed to be a pseudotumor problem, typical of those related to CoCr debris with high metal-ion concentrations. She had an CoCr stem (AML), 36mm Biolox-delta head (Ceramtec), and a Pinnacle acetabular cup with CoCr liner (Ultramet, Depuy J&J). This patient had no concerns regarding subluxation, dislocation or squeaking. Three years ago she complained of mild to moderate groin and thigh pain in her left hip. This worsened in the past year. She noticed increased swelling now with an asymmetry to her right hip. She went to the emergency room in Dec-2014 and was referred to a plastic surgeon. In our consult we reviewed MARS-MRI and CT-scans that demonstrated multiple mass lesions surrounding the hip. Laboratory results presented Co=0.7, Cr=0.3 ESR=38 and Crp=0.3.
At revision surgery, the joint fluid was hemorrhagic/bloody with hemosiderin staining the soft tissues. Multiple large 4–5×5cm nodules were present in anterior aspect of the hip as well as multiple nodules surrounding posterior capsule and sciatic nerve. Pathology demonstrated a very cellular matrix with hemosiderin-stained tissue and multiple giant cells, which was judged consistent with PVNS. The trunnion showed no fretting, no contamination and no discoloration. The superior neck showed impingement due to low-inclination cup. There was minimal evidence of metal-debris staining the tissues. There was a large metallic-like stripe across the ceramic head.
This is a particularly interesting case and may be the first reported recurrent PVNS around a ceramic-on-metal bearing (COM). Data is scant regarding clinical results of COM bearings and here we have a nine-year result in a young and active female patient. She was believed to have a metalosis-related pseudotumor yet her metal-ion levels were not alarmingly high and there was no particular evidence of implant damage or gross wear products. In addition, the CoCr trunnion appeared pristine. Our work-up continues with analyses of wear and histopath-evidence. This case may demonstrate the need for a broadening of the differential diagnosis when dealing with hip failures.
Foreword
Silver coatings, used in many surgical devices, have demonstrated good antimicrobial activity and low toxicity. Oncological musculoskeletal surgery have an high risk of infection, so in the last decades, silver coated mega-prostheses have been introduced and are becoming increasingly widespread.
Material and methods
We performed a retrospective analysis of 158 cases of bone tumors, primary or metastatic, treated between 2002–2014 with wide margins resection and reconstruction with tumoral implants. The average age was 59 years (range 11–78 years), all patients were treated by the same surgeon, with antibiotic prophylaxis according to a standard protocol. In 58.5% of patients were implanted silver-coated prostheses, in the remaining part, standard tumor prosthesis. Patients were re-evaluated annually and were recorded complications, with particular attention to infectious diseases.
Objective
The purpose of this study was to investigate how rim poly locking scallop cutting depth could affect the rigidity of acetabular cup.
Materials and Methods
(11) generic FEA models including (5) 50mm OD Ti6Al4VELI hemispherical acetabular shells with thicknesses of 3.0, 3.5, 4.0, 4.5 and 5.0mm, and (6) 4mm thick hemispherical shells with standard rim poly indexing scallops varied in cutting depths from inner diameter of the cup in 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5mm. All cups were analyzed in ANSYS® Workbench™ FEA software with a loading condition of 2000N applied to the cup rim per V15 ISO/TC 150/SC 4 N. Verification was carried out by the physical test of a same generic Ti6Al4VELI 50mmOD and 5mm thick solid hemispherical shell under 2000N rim directed load. The cup deformation was compared with FEA results. The maximum deformation of FEA scalloped cups were compared with that of solid hemispherical cups with different shell thickness.
Introduction
Mechanical properties of irradiated Ultra High Molecular Weight Polyethylene (UHMWPE) after aging have been well documented. However there was no sufficient data for the dimensional change due to irradiation and aging. This change may have adverse effects to the implant modular locking mechanism. The purpose of this study was to characterize the dimensional change of UHMWPE after irradiation and aging.
Materials and Method
Total (30) ø15mm × 50mm virgin GUR 1050 UHMWPE rods were cleaned, dried, inspected, vacuum packaged and stored in 20°C environment for 2 days. Among them, (20) samples were measured along the 50mm length at 20°C +/-2°C before and after two conditions: 1, (10) were submerged in 40°C DI water for 2 hours and dried in 40°C to simulate the cleaning process and 2, (10) were soaked in 37°C saline for 14 days to simulate initial in-vivo environment. Remaining (10) samples were measured in the same way after irradiation of 30KGy dosage and then measured again after soaking in 37°C saline for 14 days to simulate the actual radiation sterilization and in-vivo soaking conditions. Same samples were measured once more after accelerated aging per ASTM-1980-07 for 80 days to simulate the 3 year in vivo life. The differences in measurements between virgin and end conditions were documented as the percentage dimensional change. After the measurements, in the groups of DI water, saline soaking and radiation + aging, (3) samples were randomly selected for DSC measurements. The results were compared with dimensional measurements. Statistical analysis was performed by the student t test to compare virgin condition and the conditions after each treatment. 95% significance level was assumed.
Introduction
The use of reverse total shoulder arthroplasty (RSA) is becoming increasingly common in the treatment of rotator cuff arthropathy. Standard RSA technique involves medialising the centre of rotation (COR) maximising the deltoid lever arm and compensating for rotator cuff deficiency. However reported complications include scapular notching, prosthetic loosening and loss of shoulder contour. As a result the use of Bony Increased Offset Reverse Shoulder Arthroplasty (BIO-RSA) has been gaining in popularity. The BIO-RSA is reported to avoid these complications by lateralising the COR using a modified base plate, longer central post and augmentation with cancellous bone graft harvested from the patients humeral head.
Objectives
This study aims to compare the outcome in terms of analgesic effect, function and satisfaction, in patients treated with standard RSA and BIO-RSA.
Introduction
The use of reverse total shoulder arthroplasty (RSA) is becoming increasingly common in the treatment of rotator cuff arthropathy. In recent years indications for use have expanded to include elderly patients in whom either internal fixation is not possible due to fracture configuration, poor bone quality, or presence of a rotator cuff deficiency. There is however relatively little evidence to support its use in these circumstances.
Objective
This study aims to assess the viability of RSA as a salvage procedure in the treatment of complex proximal humeral fractures or irreducible dislocations, quantified in terms of functional outcome, complication rates and patient reported satisfaction.
Introduction
Total hip arthroplasty has seen a transition from cemented acetabular components to press-fit porous coated components. Plasma sprayed titanium implants are often press-fit with 1mm under-reaming of the acetabulum; however, as porous coating technologies evolve, the amount of under-reaming required for initial stability may be reduced. This reduction may improve implant seating due to lowered insertion loads, and reduce the risk of intraoperative fracture. The purpose of this study was to investigate the initial fixation provided by a high porosity coating (P2, DJO Surgical), and a plasma sprayed titanium coating under rim loading with line-to-line and 1mm press-fit surgical preparation.
Methods
Five, 52mm high porosity acetabular cups (60% average porosity) and five 52mm plasma sprayed titanium coated cups were inserted into low density (0.24g/cc) biomechanical test foam (Pacific Research Laboratories). Foam test material was cut into uniform 90×90×40mm blocks. Reaming was performed using standard instrumentation mounted on a vertical mill. Cups were first inserted into foam blocks prepared with line-to-line (52mm) reaming. Following mechanical testing, cups were removed from the foam, cleaned, and inserted into foam blocks prepared with 1mm under reaming (51mm). In total 4 test conditions were evaluated:
Acetabular cup impaction was carried out using a single axis servohydraulic test machine (Instron 8500). Cups were inserted at 1mm/s to a load of 5kN. Insertion load was calculated as a 0.1mm offset from the linear portion of the force/displacement curve; insertion energy was the area under the curve.
Tangential rim loading was applied at 0.0254mm/s by a conical indenter to the implant rim. Load data were recorded at 1kHz. Cup displacement was recorded by a 3D, marker-based tracking system at 15Hz (DMAS, Spicatek). Six markers were attached to a disk secured in the acetabular cup (Figure 1). Yield failure was defined as 0.331o of angular displacement (150µm of relative displacement). Angular displacement was derived by calculating the normal vector of a best-fit plane based on marker centroids.
Management of the young adult hip pathologies is a special entity in orthopaedic surgical practice that needs special emphasis and consideration. A wide range of pathological and traumatic conditions occur in the young adult hip that lead to functional disability and the development of premature osteoarthritis. Proper surgical interference when the hip is still in the pre-arthritic stage restores function to the young hip and protects it from early degenerative changes, and hence the anticipated need for future joint replacement surgery is prevented. Accurate estimation of the biomechanical error combined with careful understanding of the hip joint biology is the cornerstone of success of any hip preservation surgery ever performed to save the young adult hip.
Safe surgical hip dislocation approach was adopted as one of the tools in the hands of the hip preservation surgeon to treat a broad spectrum of intra-articular hip pathologies like Perthes disease and severe forms of slipped capital femoral epiphysis (SCFE). Osteo-chondroplasty at the head-neck junction with relative femoral neck lengthening for Perthes disease, and Subcapital re-orientation of severe SCFE based on its retinacular vascular pedicle are often performed via the surgical hip dislocation approach. The approach is also useful with certain types of acetabular fractures that enables fixation of dual-column fractures via single approach with intra-articular visualization for the accuracy of reduction and hardware placement.
The 4 cm mini-open direct anterior approach is ideal for the surgical treatment of cases with cam and/or pincer types of femoro-acetabular impingement. Peri-articular osteotomies performed either on the acetabular or the femoral sides of the hip joint are extremely useful in the correction of the biomechanical error that led to an existing hip pathology. Periacetabular osteotomies are commonly performed to treat dysplasia of the young hip. Proximal femoral osteotomies are commonly performed to treat a wide range of hip pathologies including non-unions of femoral neck fractures in the young adult.
Correction of the biomechanical error at the proper timing ensures normalization of the hip joint loading conditions and range of motion that leads to reversal of the pathologic process and prevention of osteoarthritis. A hip joint replacement would have an unknown but certainly a finite life, whereas a young hip that has healed after hip preservation surgery would definitely last for a lifetime.
Purpose
It is well known that meniscus extrusion is associated with structural progression of knee OA. However, it is unknown whether medial meniscus extrusion promotes cartilage loss in specific femorotibial subregions, or whether it is associated with a increase in cartilage thickness loss throughout the entire femorotibial compartment. We applied quantitative MRI-based measurements of subregional cartilage thickness (change) and meniscus position, to address the above question in knees with and without radiographic joint space narrowing (JSN).
Methods
60 participants with unilateral medial OARSI JSN grade 1–3, and contralateral knee OARSI JSN grade 0 were drawn from the Osteoarthritis Initiative. Manual segmentation of the medial tibial and weight-bearing medial femoral cartilage was performed, using baseline and 1-year follow-up sagittal double echo steady-state (DESS) MRI, and proprietary software (Chondrometrics GmbH, Ainring, Germany). Segmentation of the entire medial meniscus was performed with the same software, using baseline coronal DESS images. Longitudinal cartilage loss was computed for 5 tibial (central, external, internal, anterior, posterior) and 3 femoral (central, external, internal) subregions. Meniscus position was determined as the % area of the entire meniscus extruding the tibial plateau medially and the distance between the external meniscus border and the tibial cartilage in an image located 4mm posterior to the central image (a location commonly used for semi-quantitative meniscus scoring). The relationship between meniscus position and cartilage loss was assessed using Pearson (r) correlation coefficients, for knees with JSN and without JSN.
Purpose
The study aim was to assess how the periprosthetic bone density of the MiniHip™ changed in the course of the first year. Is there a correlation between the decrease in bone density with CCD angle or stem size? Are there other variables influencing the changes in bone density?
Material and Methods
62 patients aged 25–78 years (34 women, 28 men) were implanted with a MiniHip total hip replacement during 2011 and 2012 through an anterolateral minimally invasive (ALMI) approach. Pre-operative diagnosis was osteoarthritis in 49 patients, dysplasia in 7, femoral necrosis in 4 and femoral neck fracture in 2 cases. As a primary variable the periprosthetic bone mineral density (BMD) was measured postoperatively within the first 2 weeks as a baseline measurement. Follow-up measurements were performed at 3, 6 and 12 months postoperatively. Statistical analysis was conducted to show any differences.
Introduction
Implant position plays a major role in the mechanical stability of a total hip replacement. The standard modality for assessing hip component position postoperatively is a 2D anteroposterior radiograph, due to low radiation dose and low cost. Recently, the EOS® X-Ray Imaging Acquisition System has been developed as a new low-dose radiation system for measuring hip component position. EOS imaging can calculate 3D patient information from simultaneous frontal and lateral 2D radiographs of a standing patient without stitching or vertical distortion, and has been shown to be more reliable than conventional radiographs for measuring hip angles[1]. The purpose of this prospective study was to compare EOS imaging to computer tomography (CT) scans, which are the gold standard, to assess the reproducibility of hip angles.
Materials and Methods
Twenty patients undergoing unilateral THA consented to this IRB-approved analysis of post-operative THA cup alignment. Standing EOS imaging and supine CT scans were taken of the same patients 6 weeks post-operatively. Postoperative cup alignment and femoral anteversion were measured from EOS radiographs using sterEOS® software. CT images of the pelvis and femur were segmented using MIMICS software (Materialise, Leuven, Belgium), and component position was measured using Geomagic Studio (Morrisville, NC, USA) and PTC Creo Parametric (Needham, MA). The Anterior Pelvic Plane (APP), which is defined by the two anterior superior iliac spines and the pubic symphysis, was used as an anatomic reference for acetabular inclination and anteversion. The most posterior part of the femoral condyles was used as an anatomic reference for femoral anteversion. Two blinded observers measured hip angles using sterEOS® software. Reproducibility was analysed by the Bland-Altman method, and interobserver reliability was calculated using the Cronbach's alpha (∝) coefficient of reliability.
Introduction
Polyethylene (PE) wear is clearly linked to total hip arthroplasty (THA) failure, leading to osteolysis and decreasing survivorship rates. Dual mobility cups (DMC) are widely used to prevent or treat THA instability. However some studies have pointed PE wear risk as a “dual wear” risk. Hip wear simulation is usually used to understand factors influencing wear and to differentiate design, PE types and materials performances. To date, few works have been published studying dual mobility insert wear.
Objectives
Our objective was to evaluate wear of DMC with comparison with a fixed single articulating hip design and to measure wear under same conditions (loading cycle, temperature, sterilization, material and surface roughness).
INTRODUCTION
Total Knee Arthroplasty (TKA) survival is directly dependent on precise component placement. As showed by Mason meta-analysis in 2007, only 68.2% of TKAs achieved axis less than 3° with conventional methods versus 91% with Computer Assisted Surgery (CAS). However, if CAS seems to have more accuracy its use is in less than 10% procedures in United States because of its cost, operative time and need of extra pin sites. Smart technology, providing no requirement or arrays for registration, no need of pre operative images and lest cost effective seems to be an encouraging way.
OJBECTIVES
We report our experience of a new system that is an accelerometer-based portable navigation with a disposable display console and reference sensor; gyrometer is like smartphone ones. This system permits to realize femoral distal cut, and tibial proximal cut, adjusting varus-valgus, flexion-extension and tibial slope regardless implants used. Goal of the study was to determine accuracy and reliability of the system.
This is a minimum 15 year follow up of a cohort of 58 patients (30 men and 28 women) who underwent 62 non-cemented THR between 1998–2000 (54 unilateral, 4 bilateral), in whom an off-the-shelf “lateral flare” femoral component was implanted. These surgeries were performed by a single surgeon and have been followed continuously by that same surgeon. The mean age at the time of surgery was 60.4 yrs (52–74). There were no exclusions for osteoporosis or type “C” femoral geometry. Although some patients have deceased during these 15 years, there have been no stem failures, revisions or impending stem revisions at the time of follow up or at the time of death in those who have passed. Two patients have undergone revision of their acetabular liner for poly wear. There have been no complaints of thigh pain; and like the results seen in other series employing this stem design, there has been no evidence of bone loss due to stress shielding or subsidence of the femoral component in any of these patients.
This mid-term follow up re-affirms the dynamic tension band model of hip biomechanics, upon which the “lateral flare” design is predicated. This model predicts that the proximal lateral femur can experience compression during the gait cycle and as such can be utilized as an additional base of support upon which the femoral component can rest. Rather than relying upon a traditional “press fit” technique to achieve initial implant stability, a technique which is highly dependent upon femoral geometry, bone quality and may risk fracture on implant seating, the “lateral flare” design permits a gentler, safer and more physiologic means of achieving initial implant stability necessary for osseous integration to occur. This alterantive terchnique has been termed a “rest fit”.
Background
Several studies have shown that
Study Question
Is there a specific patient population at increased risk of
Introduction
Realistic in-vivo loads on knee implants from telemetric analyses were recently published. Impacting an implant, especially a ceramic one, will produce high peak stresses within the component. Data for loads occurring during implantation of a knee implant are scarce. To ensure a safe impaction of ceramic tibial trays the stresses caused by it need to be known.
Materials and Methods
Impaction testing including force measurements (using Kistler piezo load cell 9351B) was performed on a ceramic tibial tray. The same test was simulated by computational analysis using FEM (Finite-Element-Method). Because the forces measured and those calculated by FEM were significantly different, an in vitro impaction study was performed to obtain realistic loads for a ceramic tibial tray. A surgeon was asked to perform heavy hammer blows which may occur during implantation. Using a high speed camera (phantom V7.2) the velocity of the hammer at the time of impaction was determined. Using this parameter instrumented ceramic tibial trays (BPK-S Knee, P. Brehm) were implanted into a biomechanical Sawbones® model. Linear strain gauges were attached to the four fins of the tibial tray as these are the regions of highest stresses. Simulating the surgeon's highest impacts measurements were conducted at a frequency of 1 MHz. The identical hammer was used in this in vitro study and the velocity of the hammer was measured by using the same high speed camera. To investigate the damping effect of bone cement Palacos®R bone cement was used. Only worst-case impacts within the range achieved by the surgeon were applied to evaluate the stress distribution within the ceramic tibial tray.
INTRODUCTION
Early postoperative strength loss is pronounced following total knee arthroplasty (TKA) and is largely the result of reduced muscular activation. High-intensity progressive rehabilitation may limit postoperative weakness and improve long-term outcomes, but no randomized controlled trials have examined its use after TKA. The purpose of this trial was to examine the efficacy of a high-intensity progressive rehabilitation protocol (HI) compared to a lower intensity (LI) rehabilitation protocol after TKA.
METHODS
One hundred and sixty-two subjects (aged 63±7 years, 89 females) were randomized to either the HI group or LI groups after TKA. The HI intervention consisted of an early initiation of intensive rehabilitation using progressive resistance exercise. The LI intervention was based on a synthesis of previously published standard TKA rehabilitation programs. Both groups were treated 2–3 times per week for 12 weeks. Outcomes included the stair climbing test, timed-up-and-go test, five-times sit-to-stand test, 6-minute walk test, isometric quadriceps and hamstring strength, quadriceps activation, surgical knee range of motion, and WOMAC. Secondary analysis evaluated whether outcomes differed depending on post-operative quadriceps activation. Outcomes were assessed preoperatively and at 1, 2, 3, 6, and 12 months postoperatively.
Introduction
Pain related to knee osteoarthritis (OA) is a complex phenomenon that cannot be fully explained by radiographic disease severity. We hypothesized that pain phenotypes are likely to be derived from a confluence of factors across multiple domains: knee OA pathology, psychology, and neurophysiological pain processing. The purpose of this study was to identify distinct phenotypes of knee OA, using measures from the proposed domains.
Methods
Data from 3494 subjects participating in the Osteoarthritis Initiative (OAI) study was analyzed. Variables analyzed included: radiographic OA severity (Kellgren-Lawrence grade), isometric quadriceps strength, Body Mass Index (BMI), comorbidities, CES-D Depression subscale score, Coping Strategies Questionnaire Catastrophizing subscale score, number of pain sites, and knee tenderness on physical examination. Variables used for comparison across classes included pain severity, WOMAC disability score, sex and age. Latent Class Analysis was performed. Model solutions were evaluated using the Bayesian Information Criterion. One-way ANOVAs and post hoc least significance difference tests were used for comparison of classes.
Introduction
Trial reduction while performing total hip replacement is an essential step of the procedure. This is to check the stability of the hip joint with the selected implant sizes and to assess the leg length to avoid discrepancy.
Disengagement of the femoral head trial from the femoral rasp stem, with subsequent migration of the trial head into the pelvic cavity is a rare occurrence, but can be a very frustrating complication to both the surgeon and occasionally the patient.
We present our experience with this exceptional situation and different management options, together with systematic review of the literature.
Patients and methods
We conducted Medline database search via Pubmed interface. MeSH search was used. Systematic review of English literature case reports was performed.
15 reports were found discussing intra-pelvic migration of different arthroplsty related materials.
The total number of reported cases was 24 cases, out of those, 21 cases were related to migration of femoral trial head, 2 cases of migrated modular hemiarthroplasty bipolar heads and one case of migrated femoral head definitive implant.
Aim
The aim of this study is to outline the steps and techniques required to create a patient specific 3D printed guide for the accurate placement of the origin of the femoral tunnel for single bundle ACL reconstruction.
Introduction
Placements of the femoral tunnels for ACL reconstruction have changed over the years 1,2. Most recently there has been a trend towards placing the tunnels in a more anatomic position. There has been subsequent debate as to where this anatomic position should be 3. The problem with any attempt at consensus over the placement of an anatomic landmark is that each patient has some variation in their positioning and therefore a fixed point for all has compromise for all, as it is an average 4. Our aim was to attempt to make a cost effective and quick custom guide that could allow placement of the center of the patients’ newly created femoral tunnel in the mid position of their contralateral native ACL femoral footprint.
Introduction
Modularity in total hip arthroplasty offers many potential benefits, however the consequences of mechanically associated corrosion continue to be concerning. Micromotion and settling of the modular components at the taper interface are thought to contribute to the etiology of this problem. The purpose of this study was to investigate the effect of hammer blows delivered in different directions on the force transmitted to the head-neck and neck-stem interface in modular hip implants.
Methods
One-hundred and forty-four impact tests were performed in six different directions: one on axis and five 10° off axis. Four different simulations were performed measuring the head-neck only and three different necks: 0°, 8°, and 15°. A constant height delivered on-axis hammer blows at a constant 4,500 Newton (N). Load cells positioned in the hammer and at the neck-stem junction transmitted voltage to an oscilloscope which measured forces.
Introduction
Total knee arthroplasty (TKA) is the definitive treatment for osteoarthritis of the knee. The primary goal of the operation is to minimize or eliminate pain associated with osteoarthritis and secondarily to regain functional mobility and stability around the knee joint in order improve overall quality of life. The vast majority of techniques utilized for this procedure involves removal of the anterior cruciate ligament (ACL). In a native knee the ACL is a primary stabilizing ligament and essential for providing proprioceptive feedback. In the absence of the ACL, the kinematics of the knee are compromised. In an effort to more accurately replicate normal knee stability, new implant designs have emerged which maintain an intact ACL. Described herein is a cadaveric study looking at ACL competency after implantation of a TKA in which the cruciate ligaments are preserved.
Methods
Twenty fresh, frozen cadaveric knees were utilized in which the ACL was intact. Specimens were excluded if there was concern for ACL stability as determined by physical examination, direct visualization during the arthrotomy and a KT-1000 measurement of anterior tibial translation in millimeters at 67N and 89N of anterior force. Each KT-1000 measurement was repeated three times using three individual examiners at both force values for a total of six data points. Bicruciate retaining components were implanted into each knee using a medial parapatellar approach. After adequate sagittal and coronal balancing was obtained, the knee was reexamined using the KT-1000 protocol described above to assess for any changes in ACL competency. The ACL was then transected and the knee was examined for a third time with the same KT-1000 protocol. For statistical analysis, a 2-way repeated-measures ANOVA was utilized. Pairwise differences were assessed utilizing Fisher's least significant difference method.
Introduction
The use of metal-on-metal (MOM) and modular total hip arthroplasty (THA) is associated with potentially serious complications including elevated serum metal ion levels, pseudotumor, cardiomyopathy and neurologic abnormalities. The primary aim of this analysis was to identify any associations between the presence of pseudotumor, serum metal ion levels, and specific dual modular implant components.
Methods
We evaluated prospectively collected data from 49 patients, mean age 58.4 years, who underwent implantation of modular THA from 01/2004-01/2010. The collected data spanned a 5–11 year period from the time of index procedure. Serum metal ion levels, including titanium, cobalt and chromium, were collected in 2012 and 2015. Hip ultrasounds were performed on each patient by a trained musculoskeletal radiologist for evaluation of the presence of soft-tissue pseudotumor. Univariate nonparametric tests were used to compare the two groups: Fisher's exact tests for categorical variables, and Wilcoxon two-group tests for continuous variables. For the purposes of analysis, values that were below the level of detection (LOD) were set to half the LOD. All analyses were performed using SAS 9.4 (SAS Institute Inc, Cary, NC, USA). Statistical significance is set at p<0.05.
Object
CT-based navigation system in total hip arthroplasty(THA) is widely used to achieve accurate implant placement. However, its internal structure was a trade secret. Therefore, it was hard to analyze optimal reference points. Now, we developed our own CT-based navigation system originally, and since then we have been conducting various analyses in order to use the system more effectively. The purpose of this study was to analyze the optimal area and the number of registration points, which enables to move initial errors into the acceptable range.
Methods
We set the anterior pelvic plane(APP) as the reference plane, and defined the coordinates as follows: X-axis for external direction, Y-axis for anterior direction, and Z-axis for proximal direction. We made pelvic bone models after THA, a normal shape and acetabular dysplasia model, and performed registration using an originally developed CT based navigation system. At first, we registered point paired matching at 4 points, and surface matching was performed at 53 points, which were placed around the acetabulum. 20 points were on anterosuperior, 10 points were on posterosuperior, 20 points were on posterior around the acetabulum, and 3 points were on the pubis. We selected surface matching points based on the actual operation approach, calculated the accuracy of the error correction, and searched the optimal area and the number of surface matching points.
Materials and Methods
We treated 60 hips in 60 patients (8 males and 52 females) with cementless THA that were performed from January 2007 to December 2009 in our hospital. 48 osteoarthritis hips, 5 rheumatoid arthritis hips and 7 idiopathic osteonecrosis hips were included. All patients were performed THA with VectorVision Hip navigation system (BrainLAB, Feldkirchen, Germany). We used AMS HA cups and PerFix stems (KYOCERA Medical co., Osaka, Japan). The mean age of surgery was 61 years old (35–79 years old). The pelvic inclination angles (PIA) were measured with anteroposterior radiographic image in accordance with the Doiguchi's method.
Results
The amount of change of the pelvic inclination angle between supine and standing position was 0.6 degrees prior to surgery, 0.7 degree at 1 year after surgery and 2.4 degrees at 5 years after surgery. 7 patients prior to surgery, 7 patient at 1 year after surgery and 18 patient at 5 year after surgery changed more than 5 degrees between supine and standing position. The pelvic inclination angles of 23 patients prior to surgery, 19 patients at 1 year after surgery and 35 patients at 5 years after surgery changed in the retroverted direction with posture change. It tended to increase after surgery.
Introduction
The use of antibiotic-loaded polymethylmethacrylate bone-cement spacers during two-stage exchange procedures is the standard in the treatment of patients with delayed prosthetic joint infection. The real antimicrobial activity of these spacers is unclear because the adherence of bacteria to cement might result in clinical recurrence of infection. The purpose of the study is to evaluate the in vitro formation of
Materials and methods
Cement disks (diameter = 6 mm) impregnated with gentamicin and colistin were submerged in bacterial suspensions of Methicillin-resistant
Although cemented fixation provides excellent results in primary total hip replacement (THR), particularly in patients older than 75 years, uncemented implants are most commonly used nowadays. We compare the rate of complications, clinical and radiological results of three different designs over 75-years-old patients.
Materials and Methods
433 hips implanted in patients over 75 years old were identified from our Local Joint Registry. Group A consisted of 139 tapered cemented hips, group B of 140 tapered grit-blasted uncemented hips and group C of 154 tapered porous-coated uncemented hips. A 28 mm femoral head size on polyethylene was used in all cases. The mean age was greater in group A and the physical activity level according to Devane was lower in this group (p<0.001 for both variables). Primary osteoarthritis was the most frequent diagnoses in all groups. The radiological acetabular shape was similar according to Dorr, however, an osteopenic-cylindrical femur was most frequently observed in group A (p<0.001). The pre- and post-operative clinical results were evaluated according to the Merle-D'Aubigne and Postel scale. Radiological cup position was assessed, including hip rotation centre distance according to Ranawat and cup anteversion according to Widmer. We also evaluated the lever arm and height of the greater trochanter distances and the stem position. Kaplan-Meier analysis was done for revision for any cause and loosening.
Results
The hip rotation centre distance was greater and the height of the greater trochanter was lower in group B (p=0.003, p<0.001, respectively). The lever arm distance was lower in group C (p<0.001). A varus stem position was more frequently observed in group B (p<0.001). There were no intra- or post-operative fractures in group A, although there were five intra-operative fractures in the other groups plus two post-operative fractures in group B and four in group C. The rate of dislocation was similar among groups and was the most frequent cause for revision surgery (8 hips for the whole series). The mean post-operative clinical score improved in all groups. The overall survival rate for revision for any cause at 120 months was 88.4% (95% CI 78.8–98), being 97.8% (95% CI 95.2–100) for group A, 81.8% (95% CI 64.8–98.8) for group B and 95.3% (95% CI 91.1–99.6) for group C (log Rank: 0.416). Five hips were revised for loosening. The overall survival rate for loosening at 120 months was 91.9% (95% CI 81.7–100), being 99.2%(95% CI 97.6–100) for group A, 85.5 (95% CI 69.9 −100) for group B and 100% for group C (Log Rank 0.093).
Introduction
Alumina-on-alumina in total hip replacement has been used for avoiding osteolysis and loosening. Published series report no ceramic wear and low rates for fractures and noises, but report poor results because of acetabular fixation failure. From 1999 to 2005, we used the “first generation” of a cementless cup, tri-radius relatively-smoothed HA coated (group 1), and from 2006 we have used a “second-generation” of this same cementless cup design with a macrotextured surface (group 2). We compare the perioperative conditions of two groups of patients using these two different cups and the clinical and radiological results.
Material and Methods
We analysed 679 (612 patients) consecutive and non-selected primary cementless alumina-on-alumina prostheses. There were 342 hips in group 1 and 337 in group 2. The stem used for all patients in this series was the same and fitted with an Al2O3 liner and femoral head. The use of screws were according to the intraoperative stability of the cup (pull-out test). Patients’ mean age was 48.7+13.6 years and the average follow-up until revision or the last evaluation was 11.7 years for group 1 and 5.4 years for group 2.
Background and aim
Recent proposals have been introduced to modify stem design and/or femoral fixation in total hip replacement (THR). New designs need to consider previous design features and their results. The aim of this study has been to evaluate the clinical and radiological results of six different designs of tapered uncemented stems implanted in our Institution.
Methods
1918 uncemented hips were prospectively assessed from 1999 to 2011 (minimum follow-up of five years for the unrevised hips). All hips had a 28 or 32 mm femoral head and metal-on-polyethylene or alumina-on-alumina bearing surface. Six uncemented femoral designs that shared a femoral tapered stem incorporating a coating surface were included in the study. The different design features included the type of coating, metaphyseal filling, and sectional shape.
Introduction
The use of screws is frequent for additional fixation, however, since some disadvantages have been reported a cup press-fit is desirable, although this can not always be obtained. Cup primary intraoperative fixation in uncemented total hip replacement (THR) depends on sex, acetabular shape, and surgical technique. We analyzed different factors related to primary bone fixation of five different designs in patients only diagnosed with osteoarthritis, excluding severe congenital hip disease and inflammatory arthritis, and their clinical and radiological outcome.
Materials y Methods
791 hips operated in our Institution between 2002 and 2012 were included for the analysis. All cases were operated with the same press-fit technique, and screws were used according to the pull-out test. Two screws were used if there was any movement after the mentioned manoeuvres. Acetabular and femoral radiological shapes were classified according to Dorr et al. We analyzed radiological postoperative cup position for acetabular abduction angle, the horizontal distance and the vertical distance. Cup anteversion was evaluated according to Widmer and the hip rotation centre according to Ranawat.
Introduction
The optimal management of severe tibial and/or femoral bone loss in a revision total knee arthroplasty (TKA) has not been established. Reconstructive methods include structural or bulk allografts, impaction bone-grafting with or without mesh augmentation, custum prosthetic components, modular metal augmentations of prosthesis and tumor prosthesis. Recently metaphyseal fixation using porous tantalum cones (Zimmer, Warsaw, IN) has been proposed as alternative strategy for severe bone loss.
Objectives
The purposes of this study were to determine the clinical and radiographic outcomes in patients who underwent revision knee arthroplasty with tantalum cones with a minimum of 5-year follow-up.
Most glenoid implants rely on centrally located large fixation features to avoid perforation of the glenoid vault in its peripheral regions [1]. Upon revision of such components there may not be enough bone left for the reinsertion of an anatomical prosthesis, resulting in a large cavity that resembles a sink hole. Multiple press-fit small pegs would allow for less bone resection and strong anchoring in the stiffer and denser peripheral subchondral bone [2], whilst producing a more uniform stress distribution and increased shear resistance per unit volume [3] and avoiding the complications from the use of bone cement. This study assessed the best combination of anchoring strength, assessed as the ratio between push in and pull out forces (Pin/Pout), and spring-back, measured as the elastic displacement immediately after insertion, for five different small press-fitted peg configurations (Figure 1, left) manufactured out of UHMWPE cylinders (5 mm diameter and length).
16 specimens for each configuration were tested in two types of Sawbones solid bone substitute: hard (40 PCF, 0.64 g/cm3, worst-case scenario of Pin) and soft (15 PCF, 0.24 g/cm3, worst-case scenario of spring-back and Pout). Two different interference-fits, Ø, were studied by drilling holes with 4.7 mm and 4.5 mm diameter (Ø 0.3 and Ø 0.5, respectively). A maximum Pin per peg of 50 N was defined, in order to avoid fracture of the glenoid bone during insertion of multiple pegs. The peg specimens were mounted into the single-axis screw-driven Instron through a threaded fixture. A schematic of the experimental set up is made available (Figure 1, centre). The peg was pushed in vertically for a maximum of 5 mm at a 1 mm/s rate, under displacement control, recording Pin. The spring-back effect was assessed by switching to load control and reducing the load to zero. The peg was then pulled out at a rate of 1 mm/s, recording Pout. The test profile is depicted in Figure 1 (right).
Average Pout/Pin, spring back (in mm) and force-displacement curves for all 80 specimens tested are shown in Figure 2. These were split into groups according to the type of bone substitute and interference-fit, with the right column showing the average values for the Pin. High repeatability among samples of the same configuration tested is noted. Configurations #1, #3 and #5 all exceed the maximum Pin per peg for at least one type of bone. Configuration #2 has the lowest Pin of all (best thread aspect ratio), followed by configuration #4 (thinner threads). The peg configurations #4 and #2 had the highest Pin/Pout. The peg configurations with lowest spring-back after insertion were configuration #2 and #4. Interference fit of Ø 0.3 mm was shown to reduce Pin below maximum limit of 50 N without great influence in spring-back.