Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Hip

THE EFFECT OF CHANGES IN OPERATING THEATRE PRACTICE MONITORED BY SETTLE PLATES

British Hip Society meeting (BHS) March 2016



Abstract

As a result of laser imaging studies in an ultraclean theatre we concluded that obstructions to horizontal airflow at the periphery might produce areas of high particulate residence times. High residence times may allow a higher proportion of infected particles to land. We decided to investigate this effect by placing settle plates in defined positions on instrument trays during surgery.

In an initial study contamination was 0.25 colonies/plate/hour. When the surgeon, assistant and scrub person all used a body exhaust system the contamination rate was 0.04 colonies/plate/hour. We then organised the instrument tables with two large tables orientated so that the scrub person did not have to stand between the airflow and the table. We placed plates on both trays with the locations recorded.

With the instrument trolleys in optimised positions the contamination rate remained consistently at 0.04 colonies/plate/hour. An animation was produced showing how the bacterial colonies appeared over 18 hours of surgery. The majority of the contamination occurred on the surgeons’ side trolley at the opposite end of the trolley to the surgeon.

Ultraclean enclosures in the UK are specified by HTM03-01, which sets a standard of <10 cfu/cubic meter measured by active air sampling. The measurement does not however take place during surgery, as it is very difficult to perform air sampling during surgery. There is a reasonable correlation between air contamination and settle plates so they are a viable method for during surgery monitoring.

In a modern operating enclosure, using body exhausts, our contamination rate compares favourably to the fourth phase of Charnley's classic study in which he used 300 air changes/hour in the prototype closure. The rate compares favourably to the multi-centre Italian GISIO-ISChIA study. The contamination rate achieved could form a basis for comparative audits based on realistic during surgery monitoring.