Abstract
Introduction
Massive defect of the acetabular bone is one of the severe situation in the hip arthroplasty. Installation of cup supporter or acetabular reinforcement device is one of the important method as well as big cup and bone graft etc. Preparing the device to be suitable shape is very important and installing it at the very position where the shaping was intended is also very important to obtain a stable condition for the arthroplasty. When we use navigation system, the device must be programmed in. But it is impossible to programme a device we have bended by ourselves into the system. If we can use a navigation system for such devices for those cases, we can expect better installation. We can fit the device on the patient's bone during the surgery of course; which is the ordinary procedure fot it; but it requires much time and tissue damage maybe with less accurate fitting.
Materials and Methods
Two primary and three revision total hip arthroplasty cases with severe acetabular bone defect were treated with this method. First we have made chemical wood model for each case and bended the cup supporter on it. (Fig. 1) Then CAT scan of the model and the bended device on it were taken. Then the coordinate system of DICOM data set of the patient's original pelvis and the second DICOM data set i.e. the bended prosthesis were unified using MIMICS (Materialize, Belgium.) An STL format geometry data file of the bended device was extracted and merged into original DICOM dataset. Thus we could obtain a DICOM data set we call “predicted post-op DICOM.” During the surgery, a navigation system was used based on the predicted DICOM data.
Result
Before installation of the device, navigation system could indicate pointer tip is expected to be device or not. After installation, touching the device by the pointer the system could tell if the device is in correct position or not. (Fig. 2) Using image merge of preoperative DICOM on post operative DICOM. The accuracy was very good. (Fig. 3)