Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Impact of Femoral Offset on Primary Total Hip Arthroplasty Outcomes

International Society for Technology in Arthroplasty (ISTA)



Abstract

Introduction:

Total hip arthroplasty (THA) is extremely effective in treating debilitating arthritic conditions of the hip. With the many modular prosthetic designs available, surgeons can now precisely construct mechanical parameters such as femoral offset (FO). Although several studies have investigated relationships between offset choice and hip abductor strength, hip range of motion, and prosthetic wear rate, there is scarce data on the effect of FO on pain and functional outcomes following THA. The objective of this study was to assess the effect of restoring FO (within varying degrees compared to the contralateral non-diseased hip [CL]) on physical function, mental well-being, pain, and stiffness outcomes as measured by the Short Form 12 Health Survey (SF-12) and Western Ontario and McMaster University Osteoarthritis Index (WOMAC) at post-operative follow-up.

Methods:

We prospectively collected data on 249 patients that underwent unilateral THA with no or minimal disease of the contralateral hip. Baseline data collection included: age, gender, diagnosis, femoral head size, type of stem, and pre-operative SF-12 and WOMAC scores. Post-operative SF-12 and WOMAC scores were recorded during annual follow-up visits. Post-operative FO was retrospectively measured on standard anteroposterior (AP) pelvis radiographs and compared to FO of CL. FO was measured as the perpendicular distance from the femoral head center of rotation to the anatomic axis of the femur with appropriate adjustments made for image magnification. Patients were categorized into one of three groups: decreased femoral offset (dFO, less than −5 mm compared to CL), normal femoral offset (nFO, between −5 and +5 mm of CL), and increased femoral offset (iFO, greater than +5 mm compared to CL).

Results:

In all, 31 patients were categorized into dFO, 163 categorized into nFO, and 55 categorized into iFO. At baseline, the groups differed in categorical diagnoses (p = 0.01). Further analysis revealed a higher percentage of posttraumatic arthritis in dFO as compared to nFO and iFO (12.9%, 1.2%, and 1.8%, respectively). Moreover, a higher percentage of hip dysplasia was present in iFO as compared to nFO and dFO (14.5%, 3.6%, and 6.5%, respectively). Pre-operatively, dFO had lower WOMAC Pain scores than nFO and iFO (29.68, 43.39, and 43.63, respectively; p < 0.005). (Please see Table 1 for comparison of baseline characteristics between groups.) All other pre-operative demographic and survey characteristics were similar. At most recent post-operative follow-up, dFO had lower WOMAC Physical Function scores than nFO and iFO (72.03, 83.23, and 79.51, respectively; p < 0.02) (see Table 2).

Discussion:

Reduction of patients' native FOs by greater than 5 mm during THA can lead to inferior levels of physical function. Furthermore, increasing FO by greater than 5 mm did not lead to increased levels of pain nor decreased levels of function.


*Email: