Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Trauma

EARLY DIAGNOSIS OF INFECTION BY DETECTION OF MICROBIAL HEAT PRODUCTION IN SONICATION FLUID OF REMOVED IMPLANTS

European Federation of National Associations of Orthopaedics and Traumatology (EFORT) - 12th Congress



Abstract

Objectives

Establishing the diagnosis of implant-associated infections is often difficult, because of variable clinical presentations and lack of uniform diagnostic criteria. Sonication of removed orthopedic devices was shown to have superior sensitivity and specificity for infection. We evaluated the value of microcalorimetry as a quick and reliable tool in the diagnosis of infection in sonication fluid from removed implants.

Methods

Between 10/2009 and 02/2010 we prospectively included all removed orthopaedic devices at our institution, which were subjected to sonication. Periprosthetic tissue cultures were performed as standard procedure. The removed device was sonicated in Ringer solution (40 kHz, 1 minute) and the resulting fluid was cultured and centrifuged (3000 × g, 10 minutes). The resulting pellet was resuspended in 3 ml tryptic soy broth for isothermal microcalorimetry (sensitivity of 0.25 μW). The detection time until increase of 20 μW was calculated. A 48-channel batch calorimeter (TA Instruments, New Castle, DE, USA) was used to measure the heat flow at 37°C controlled at 0.0001 °C.

Results

39 cases were included (24 males, mean age ± SD was 63 ± 16 years). 29 cases were orthopedic prostheses (14 hip, 11 knee, 1 shoulder and 1 joint spacers) and 10 cases osteosynthetic materials (6 screws, 3 plates, 1 cement-nail). 13 cases (33%) were infected, of which 10 (77%) were positive in sonication culture and 12 (92%) in microcalorimetry. The mean detection time by microcalorimetry was 11.4 h (range, 0.2 h–20.9 h). Examples for microcalorimetric signals can be seen in Fig.1.

Conclusions

Microcalorimety of sonication fluid showed superior sensitivity for the diagnosis of infection with detection time of <24 h. This method is a promising diagnostic assay for a rapid and accurate diagnosis of infections associated with orthopedic devices.