Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Trauma

BIOMECHANICAL EFFECT OF DYNAMIC AND SEMI-RIGID MONOSEGMENTAL FUSION

European Federation of National Associations of Orthopaedics and Traumatology (EFORT) - 12th Congress



Abstract

Introduction

The degeneration of the adjacent segment in lumbar spine with spondylodesis is well known, though the exact incidence and the mechanism is not clear. Several implants with semi rigid or dynamic behavior are available to reduce the biomechanical loads and to prevent an adjacent segment disease (ASD). Randomized controlled trials are not published. We investigated the biomechanical influence of dynamic and semi rigid implants on the adjacent segment in cadaver lumbar spine with monosegmental fusion (MF).

Materials and Methods

14 fresh cadaver lumbar spines were prepared; capsules and ligaments were kept intact. Pure rotanional moments of ±7.5 Nm were applied with a Zwick 1456 universal testing machine without preload in lateral bending and flexion/extension. The intradiscal pressure (IDP) and the range of motion (ROM) were measured in the segments L2/3 and L3/4 in following situations: in the native spine, monosegmental fusion L4/5 (MF), MF with dynamic rod to L3/4 (Dynabolt), MF with interspinous implant L3/4 (Coflex), and semi rigid fusion with PEEK rod (CD Horizon Legacy) L3-L5.

Results

Under flexion load all implants reduced the IDP of segment L2/L3, whereas the IDP in the segment L3/4 was increased using interspinous implants in comparison to the other groups. The IDP was reduced in extension in both segments for all semi rigid or dynamic implants. Compared under extension to the native spine the MF had no influence on the IDP of the adjacent disc.

The rod instrumentation (Dynabolt, PEEK rod) lead to a decreased IDP in lateral bending tests. The ROM in L3 was reduced in all groups compared to the native spine. The dynamic and semi rigid stabilization in the segment L3/4 limited the ROM more than the MF.

Discussion

The MF reduced the ROM in all directions, whereas the IDP of the adjacent segment remained unaffected. The support of the adjacent segment by semi rigid and dynamic implants decreased the IDP of both segments in extension mainly. This fact is an agreement with other studies. Compared to our data, no significant effect on the adjacent levels was observed. Interestingly, in our study, the IDP of the adjacent segment is unaffected by MF. The biomechanical influence in the view of an ASD could be comprehended, but is not completely clear. The fact of persistent IDP in the adjacent segment suggests that MF has a lower effect on the adjacent segment degeneration as presumed. Biomechanical studies with human cadaver lumbar spines are limited and depend on age and degenerative situation. The effect on supporting implants on adjacent segment disease in lumbar spine surgery has to be investigated in clinical long term studies.