Abstract
Introduction
Sparing of the spinal growth and scoliotic deformity control in patients with early-onset scoliosis is a challenge in spinal surgery. Loss of the surgical correction, implant breakage, and revision surgeries are the main disadvantages of present treatment methods. The purpose of this study is to investigate whether growing transpedicular instrumentation spares achieved surgical correction during patient's growth.
Methods
This is a prospective study of 12 consecutive patients with early-onset scoliosis from one clinical centre. All patients underwent anterior convex growth arrest and posterior transpedicular instrumentation with growing construct.
Spinal derotation was used for the correction of the deformity. The diagnoses were infantile idiopathic (n=10) and congenital (n=2) scoliosis (formation failure). Follow-up was 3 years. Mean age at the time of surgery was 9·1 years.
Results
Preoperative major Cobb angle was 74·3° (range 52–100°), minor Cobb angle was 32·2° (5–50°), and average preoperative thoracic kyphosis was 27·2° (0–63°). Mean number of the instrumented levels was 12·2. Postoperative major Cobb angle was 22·4° (0–40°), minor Cobb angle was 5·7° (0–23·5°), and postoperative thoracic kyphosis was 26·2° (6–41°). After 3 years of follow-up, primary curve was an average of 22·7° (10–40°), secondary curve was 5·4° (0–25°), and mean thoracic kyphosis was 28° (12–40°). Mean growth of the instrumented spine was 18 mm. We did not observe any gross complications in the patients. Two patients had pleural effusion, and one needed rod exchange 15 months after primary surgery because of insufficient length.
Conclusions
The results of this study show that anterior convex growth arrest and polysegmental transpedicular spinal instrumentation with growing construct save spinal growth and anatomical values achieved after surgical correction. Rod derotation for the deformity correction favours spinal growth in skeletally immature patients.