Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Knee

ULTRASONIC KNEE MENISCUS DEBRIDEMENT: EXPERIMENTAL EVALUATION OF TISSUE REMOVAL RATE AND THERMAL DAMAGE

British Association for Surgery of the Knee (BASK)



Abstract

This study evaluates high power low frequency ultrasound transmitted via a flat vibrating probe tip as an alternative technology for meniscal debridement in the knee. A limitation of this technology is thermal damage in residual meniscal tissue.

An experimental force controlled testing rig was constructed using a 20kHz ultrasonic probe suspended vertically from a load cell. Ex-vivo bovine meniscus samples were harvested from knee joints and cut into uniform 16mm discs. Effect of variation in force (2.5-4.5N) and amplitude of distal tip displacement (242-494μm peak-peak) settings on tissue removal rate (TRR) and penetration rate (PR) was analysed. Temperature elevation in the residual meniscus was measured by embedded thermocouples and residual meniscus histological analysis. The experiment was designed using a response surface quadratic model with input variables treated as continuous, using Design-Expert v.8.0 (Stat-Ease Inc., Minneapolis, MN). Statistical analysis was conducted using PASW Statistics v.18.0 (IBM SPSS Inc., Chicago, IL).

As either force or amplitude increases, there is a linear increase in TRR (Mean±SD: 0.9±0.4 to 11.2±4.9mg/s). A corresponding increase is observed in PR (Mean±SD: 0.08±0.04 to 0.73±0.18mm/s). Maximum mean temperatures of 84.6±12.1°C and 52.3±10.9°C were recorded in residual tissue at 2mm and 4mm from the ultrasound probe-tissue interface. Minimum depth of the zone of thermal alteration in residual tissue was 177.4μm.

There is an inverse relationship between both amplitude and force, and temperature elevation, with higher amplitude and force settings resulting in less thermal damage. Ultrasonic debridement shows comparable thermal damage to existing meniscal debridement technologies.