header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

THE EFFECT OF RIVAROXABAN ON OSTEOBLASTIC PROLIFERATION, FUNCTION AND GENE EXPRESSION

12th Combined Meeting of the Orthopaedic Associations (AAOS, AOA, AOA, BOA, COA, NZOA, SAOA)



Abstract

Background

Current treatments for the prevention of thromboembolism include heparin and low-molecular weight heparins (LMWHs). A number of studies have suggested that long term administration of these drugs may adversely affect osteoblasts and therefore, bone metabolism. Xarelto(tm) (Rivaroxaban) is a new anti-thrombotic drug for the prevention of venous thromboembolism in adult patients undergoing elective hip and knee replacement surgery. The aim of this in vitro study was to investigate the possible effects of rivaroxaban on osteoblast proliferation, function, matrix mineralisation and gene expression compared to enoxaparin, a commonly used LMWH.

Methods

Primary human osteoblast cultures were treated with varying concentrations of rivaroxaban (0.013, 0.13, 1.3 and 13 μg/ml) or enoxaparin (0.1, 1.0 and 10 international units/ml). The effect of each drug on osteoblast function and matrix mineralisation was evaluated by measuring alkaline phosphatase activity and calcium deposition, respectively. The MTS assay was used to assess the effect of drug treatments on cell proliferation. Changes in osteocalcin, Runx2 and BMP-2 messenger RNA (mRNA) expression following drug treatments were measured by real-time polymerase chain reaction (PCR).

Results

Rivaroxaban and enoxaparin treatment did not adversely affect osteoblast proliferation. However, both drugs caused a significant reduction in osteoblast function, as measured by alkaline phosphatase activity, with a moderate reduction in calcium deposition also observed. This reduction in osteoblast function was associated with a reduction in the mRNA expression of the bone marker, osteocalcin, the transcription factor, Runx2, and the osteogenic factor, BMP-2.

Conclusion

These data show that rivaroxaban treatment may negatively affect bone through a reduction in osteoblast function. The increased duration of recommended Rivaroxaban therapy (2 and 5 weeks) post-arthroplasty compared to Enoxaparin therapy (average one week) may have a more pronounced effect on bone homeostasis.


G Solayar, 81, Lymewood Mews, Northwood, Santry, Dublin 9, Ireland