header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

MONITORING IN VITRO AND EX VIVO INFLAMMATION USING SINGLE-WALLED CARBON NANOTUBES (SWCNTS) SENSOR TECHNOLOGY

The European Orthopaedic Research Society (EORS) 31st Annual Meeting, Porto, Portugal, 27–29 September 2023. Part 1 of 2.



Abstract

Osteoarthritis (OA) is a degenerative joint disease affecting millions worldwide. Early detection of OA and monitoring its progression is essential for effective treatment and for preventing irreversible damage. Although sensors have emerged as a promising tool for monitoring analytes in patients, their application for monitoring the state of pathology is currently restricted to specific fields (such as diabetes). In this study, we present the development of an optical sensor system for real-time monitoring of inflammation based on the measurement of nitric oxide (NO), a molecule highly produced in tissues during inflammation.

Single-walled carbon nanotubes (SWCNT) were functionalized with a single-stranded DNA (ssDNA) wrapping designed using an artificial intelligence approach and tested using S-nitroso-N-acetyl penicillamine (SNAP) as a standard released-NO marker. An optical SWIR reader with LED excitation at 650 nm, 730 nm and detecting emission above 1000 nm was developed to read the fluorescence signal from the SWCNTs. Finally, the SWCNT was embedded in GelMa to prove the feasibility of monitoring the release of NO in bovine chondrocyte and osteochondral inflamed cultures (1–10 ng/ml IL1β) monitored over 48 hours. The stability of the inflammation model and NO release was indirectly validated using the Griess and DAF-FM methods. A microfabricated sensor tag was developed to explore the possibility of using ssDNA-SWCNT in an ex vivo anatomic set-up for surgical feasibility, the limit of detection, and the stability under dynamic flexion.

The SWCNT sensor was sensitive to NO in both in silico and in vitro conditions during the inflammatory response from chondrocyte and osteochondral plug cultures. The fluorescence signal decreased in the inflamed group compared to control, indicating increased NO concentration. The micro-tag was suitable and stable in joints showing a readable signal at a depth of up to 6 mm under the skin.

The ssDNA-SWCNT technology showed the possibility of monitoring inflammation continuously in an in vitro set-up and good stability inside the joint. However, further studies in vivo are needed to prove the possibility of monitoring disease progression and treatment efficacy in vivo.

Acknowledgments: The project was co-financed by Innosuisse (grant nr. 56034.1 IP-LS)


Email: