Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

PREVENTION OF EXTERNAL FIXATOR PIN-TRACT INFECTIONS USING A SYNTHETIC COATING TO PROVIDE CONTROLLED RELEASE OF A NOVEL BROAD-SPECTRUM ANTIBIOTIC

International Society for Technology in Arthroplasty (ISTA) meeting, New Early-Career Webinar Series (NEWS), held online, November 2020.



Abstract

Introduction

Pin-tract infections are a common problem in orthopaedic surgery, which limits the time an external fixator or Taylor spatial frame can be applied to a patient. The purpose of our study is to evaluate the ability of a novel implant surface coating — cationic steroid antibiotic (CSA)-44 — to delay or prevent the onset of these infections. This coating mimics endogenous antimicrobial peptides of the innate immune system and has been shown to effectively eradicate biofilms as well as prevent infection and stimulate healing of open, contaminated fractures.

Methods

Surgeries were performed on 20 animals (outbred; Sprague-Dawley strain rats). Each animal received both CSA-coated and standard-of-care titanium pins, with pins randomized to the fifth or sixth vertebrae prior to surgeries. Animals were also randomized to either “Imaging” (imaging analysis) or “Infection” (microbiological analysis) cohorts. Surgeons were blinded to pin types and analyses cohorts. Digital images of pin sites were collected weekly over 12 weeks, and then graded by two orthopaedic surgery residents according to an established Likert scale. Graders were blinded to animal numbers, pin types, and timepoints (Figure 1). For the infection analysis cohort, four specimens per site were subjected to microbiological analysis from each site (i.e. pin, superficial skin swab, deep skin swab, sonicated bone). Each specimen was processed on three different microbiological plates (i.e. BAP, CAN, MAC) using standardized techniques. Imaging analysis was performed by dissecting vertebrae en bloc with pin retained, followed by fixation in 10% neutral buffered formalin for 72 hours. Following a graded ethanol series and storage in 70% ethanol, specimens were scanned with microcomputed tomography (µCT). Statistical analyses were performed to compare pin site appearance (chi-square testing) as well as total bacterial colony counts within each plate cohort and imaging data (Kruskal-Wallis testing); for all tests, significance was set at α=0.05.

Results

Weekly digital images of each pin site were collected, graded, and then averaged (Figure 2). Statistical analysis showed no significant difference in pin appearance between the control and CSA pin cohorts at any timepoints. For the infection analysis cohort, bacterial colonies were counted on BAP, CAN, and MAC plates, followed by bacteria species identification (Figure3). Statistical analysis showed no significant difference in total bacterial colony counts between the control and CSA pin cohorts in any of the plate groups. For the imaging cohort, post-processing and subsequent data and statistical analyses are ongoing.

Discussion

No significant differences were found between the control and CSA pin cohorts, with respect to pin appearance during the 12-week study or total bacterial colony counts on three plates, indicating that the control and CSA pins performed equivalently. Imaging analysis is ongoing. Although the environmentally-acquired infection model in an outbred rat strain was used to replicate the onset of pin tract infections in human populations, many animals showed Grade 1 or 2 pin site appearances at the 12-week endpoint. A follow-on study is underway using a direct bacterial seeding model.

For any figures or tables, please contact the authors directly.