header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

TGFBI AS A PROGNOSTIC MARKER OF ACHILLES TENDON REPAIR

The 28th Annual Meeting of the European Orthopaedic Research Society (EORS), held online, 17–18 September 2020.



Abstract

Growth factors are reported to play an important role in healing after acute Achilles tendon rupture (ATR). However, the association between growth factors and patient outcome has not been investigated previously. The aim of this retrospective study is to identify growth factors and related proteins which can be used as predictors of healing after ATR, ethical approval was obtained from the Regional Ethical Review Committees in Sweden and followed the guidelines of the Declaration of Helsinki. The study included 28 surgically treated patients (mean age 39.11 ± 8.38 yrs) with acute ATR. Healing was assessed by microdialysate two weeks after the surgery and performed on both injured and contralateral un-injured leg. The microdialysates were analyzed by proteomics based on mass spectrometry (MS) to detect growth factor expressions in ATR patients. One year after the surgery, healing outcomes were evaluated by patient-reported Achilles tendon Total Rupture Score (ATRS), Foot and Ankle Outcome Score (FAOS), and functional outcomes by heel-rise test.

A total of 1549 proteins were detected in the microdialysates of which 20 growth factor/ related proteins were identified. 7 of these were significantly up-regulated (IGFBP2, Fold change (FC) = 4.07, P = 0.0036; IGFBP4, FC = 3.06, P = 0.009; CTGF, FC = 15.83, P = 0.003; HDGF, FC = 4.58, P = 0.003; GRB2, FC = 14.8, P = 0.0004; LTBP1, FC = 12.08, P = 0.0008; TGFBI, FC = 5.54, P = 0.001) and 1 down-regulated (IGFBP6) in the injured compared to the contralateral healthy side. Linear regression analysis revealed that TGFB1 was positively associated with improved ATRS (r = 0.585, P = 0.04) as well to ATRS subscales: less limitation in running (r = 0.72, P = 0.004), less jumping limitation (r = 0.764, P = 0.001) and less limitation caused by decreased tendon strength (r = 0.665, P = 0.012). Interestingly, all 7 up-regulated proteins were positively associated with less jumping limitations (IGFBP2, r = 0.667, P = 0.015; IGFBP4, r = 0.675, P = 0.013; CTGF, r = 0.668, P = 0.015; HDGF, r = 0.672, P = 0.014; GRB2, r = 0.665, P = 0.016; LTBP1, r = 0.663, P = 0,016). No associations were observed among any of the growth factor and FAOS or patient's functional outcomes.

We conclude that growth factors and related proteins play a crucial role in ATR healing. More specifically, TGFB1 may be used as prognostic biomarker of the patient-reported outcome 1-year post-surgery. These results may be used to develop more specific treatments to improve ATR healing.