header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:



Full Access



The 28th Annual Meeting of the European Orthopaedic Research Society (EORS), held online, 17–18 September 2020.


Coronoid fractures account for 2 to 15% of the cases with elbow dislocations and usually occur as part of complex injuries. Comminuted fractures and non-unions necessitate coronoid fixation, reconstruction or replacement. The aim of this biomechanical study was to compare the axial stability achieved via an individualized 3D printed prosthesis with curved cemented intramedullary stem to both radial head grafted reconstruction and coronoid fixation with 2 screws. It was hypothesized that the prosthetic replacement will provide superior stability over the grafted reconstruction and screw fixation.

Following CT scanning, 18 human cadaveric proximal ulnas were osteotomized at 40% of the coronoid height and randomized to 3 groups (n = 6). The specimens in Group 1 were treated with an individually designed 3D printed stainless steel coronoid prosthesis with curved cemented intramedullary stem, individually designed based on the contralateral coronoid scan. The ulnas in Group 2 were reconstructed with an ipsilateral radial head autograft fixed with two anteroposterior screws, whereas the osteotomized coronoids in Group 3 were fixed in situ with two anteroposterior screws.

All specimens were biomechanically tested under ramped quasi-static axial loading to failure at a rate of 10 mm/min. Construct stiffness and failure load were calculated. Statistical analysis was performed at a level of significance set at 0.05.

Prosthetic treatment (Group 1) resulted in significantly higher stiffness and failure load compared to both radial head autograft reconstruction (Group 2) and coronoid screw fixation, p ≤ 0.002. Stiffness and failure load did not reveal any significant differences between Group 2 and Group 3, p ≥ 0.846.

In cases of coronoid deficiency, replacement of the coronoid process with an anatomically shaped individually designed 3D printed prosthesis with a curved cemented intramedullary stem seems to be an effective method to restore the buttress function of the coronoid under axial loading. This method provides superior stability over both radial head graft reconstruction and coronoid screw fixation, while achieving anatomical articular congruity. Therefore, better load distribution with less stress at the bone-implant interface can be anticipated. In the clinical practice, implementation of this prosthesis type could allow for early patient mobilization with better short- and long-term treatment outcomes and may be beneficial for patients with irreparable comminuted coronoid fractures, severe arthritic changes or non-unions.