Abstract
Introduction
Metal alloys have been commonly used for surgical applications due to their suitable mechanical characteristics and relatively good biocompatibility. However, direct cellular corrosion of orthopaedic implants remains a controversial topic and is still not fully understood. This study aims to examine a possible aspect of this corrosion mechanism by determining if macrophages can attach and directly affect the surfaces of 316L stainless steel, Ti6Al4V, and CoCrMo by releasing components of the alloy oxide layer.
Methods
IC-21 ATCC peritoneal macrophages were cultured with growth medium of RPMI 1640 with 10%FBS, L-glutamine, and gentamicin. Interferon Gamma (IFNy) and Lipopolysaccharide (LPS) were used to induce activation of macrophages. Stainless Steel, CoCr, and Titanium disks cut, polished, and placed into a 96 well plate. Stainless steel testing included 6 groups: standard medium, 20,000 cells, 40,000 cells, 20,000 activated cells, 40,000 activated cells. CoCr and Ti testing included the following: medium, 40,000 cells, 20,000 activated cells, cells, no disk + 20,000 cells, no disk + 40,000 cells. After cells were attached to the surface, culture media was replaced and collected every 24 hours for stainless steel and every 12 hours for Ti and CoCr. ICP-MS, conducted at Brooks Applied Labs (Bothell, WA), was used to determine metal concentrations found in the supernatant.
Results
A Kurskal-Wallis test and Tukey test were used to compare the groups in Table 2 (medium only, IFNy/LPS 20K, medium 20K cells, medium 40K cells). On stainless steel, both non-activated and activated cell groups were shown to have a statistically significant increase in metal ion release for Cr, Fe, and Ni (p<0.05) compared to medium only. On Ti, there was a significant increase in Al (<0.001) and decrease in V (p=0.003) among all groups compared to medium. No differences were seen among disk groups on CoCr. No difference was seen among activated and non-activated cells placed on all three types of disks.
Discussion
This study was successful in showing that macrophages are capable of affecting the oxide layer of stainless steel and Ti by releasing more components of the oxide surface within 30 days. A significant increase in Cr, Fe, and Ni ion release was realized when cells were cultured on the surface of stainless steel disks for 30 days. A previous study, also involving 316L stainless steel, has shown that osteoclasts cause a greater increase in Cr compared to Ni under similar conditions. Our results show that macrophages lead to a greater increase of Ni ions compared to Cr. This suggest that various cell types may effectively change metal ion release profiles in different ways. Surprisingly, V content decreased when cells were attached to Ti disks, possibly indicating uptake of the V particles into the cells instead of release into the supernatant. No differences where seen among CoCr disk groups, therefore we cannot determine if corrosion is occurring during the 30 period. To get a more accurate representation a longer testing time may be necessary.
For any tables or figures, please contact the authors directly.