Abstract
Aseptic loosening is the leading cause for revision in total hip arthroplasty. Retro-acetabular lysis is often a silent process until severe bone loss causes catastrophic failure. This presents a technically difficult problem for the surgeon and a poorer result for the patient compared to primary arthroplasty. While the major cause of osteolysis is reaction to polyethylene particles, there is little data on the initiation and progression of such lesions. Further, alterations in the mechanical environment caused by such pathology is unclear. We present our use of 3D, finite element (FE) models of retro-acetabular pathology to investigate the biomechanical effects of osteolysis in total hip arthroplasty. Axial CT scan slices from a patient with cystic osteolysis were selected. Areas of cortical bone, cancellous bone, the cup and the cyst are accurately identified. The axial images are matched to a predetermined grid and used to build a complex finte element model. In this way complex anatomy can be built into the FE model and used to map cystic lesions. Force is then applied to the acetabulum.
Initial analysis shows similar stress transmission in cystic disease compared to the post operative pelvis. Pelvic bone still behaves as a sandwich construct with transmission from the acetabulum to the SI joints, pubic symphysis and medial wall. In the setting of pelvic medial wall deficiency, stress transmission is altered with areas of low stress around the defect.
The FE models containing pathology can be compared to models with generic bone density values immediately after total hip arthroplasty. The presence of a cyst in cancellous bone with intact cortical bone, demonstrates strain patterns similar to the post operative pelvis. Once cortical bone loss occurs strain patterns begin to change. This may mark a critical point in osteolytic progression. We present a developing new tool to be used in the assessment of a patient population with retroacetabular cystic disease.
Correspondence should be addressed to: Associate Professor N. Susan Stott, Orthopaedic Department, Starship Children’s Hospital, Private Bag 92024, Auckland, New Zealand.