Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

METAL ION RELEASE IN LARGE DIAMETER HEAD TOTAL HIP ARTHROPLASTY VERSUS HIP RESURFACING SYSTEM. EFFECT OF MODULARITY AND DESIGN OF THE IMPLANTS



Abstract

Introduction: Metal on metal hip replacement using large diameter bearings can be used as part of a hip resurfacing (HR) system or with a large diameter head total hip arthroplasty (LDH-THA). Both types of implant release metal ion, but the amount of ion released after LDH-THA has not been studied. The aim of the present study was to assess whole blood metal ion release at one year following LDH-THA.

Material and Method: Pre and post operative Cr, Co and Ti concentrations in whole blood were measured using a high resolution mass spectrometer (HR-ICP-MS) in 29 patients with LDH-THA (Durom LDH, Zimmer). The results were compared to published ion levels on a HR system (Durom, Zimmer) possessing the same tribological characteristics, the only differences being the presence of a modular sleeve and opened femoral head design in LDH-THA.

Summary of results: Post operative Cr, Co and Ti mean levels of LDH-THA were 1.3, 2.0 and 2.8 μg/L at 6 months and 1.3, 2.2 and 2.7 μg/L at 12 months. In the LDH-THA, the opened femoral head design showed significantly higher Co ion concentrations than the closed femoral head design (3.0 vs 1.8 ug/L, p=0.037). Compared to previously published results after HR, Co levels were significantly higher at one year in the LDH THA (2.2 ug/L vs. 0.7 ug/L, p< 0.001).

Discussion: In order to reduce wear and ion release from metal-metal bearing, most manufacturers focus research on improvements at the bearing surfaces. This study has demonstrated that the addition of a sleeve with modular junctions and an open femoral head design of LDH-THA causes more Co release than bearing surface wear (157% and 67% respectively). Even if no pathological metal ion threshold level has been determined, efforts should be made to minimize their release. We recommend modification or abandonment of the modular junction and femoral head closed design for this specific LDH-THA system. The total amount of ion released from a metal-metal implant should be considered globally and newer implant design should be scientifically evaluated before their widespread clinical use.

Correspondence should be addressed to: EFORT Central Office, Technoparkstrasse 1, CH – 8005 Zürich, Switzerland. Tel: +41 44 448 44 00; Email: office@efort.org

Author: Pascal André Vendittoli, Canada

E-mail: pa.vendittoli@videotron.ca