header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

KNEE PASSIVE FLEXION AXIS DOES NOT CHANGE IN OSTEOARTHRITIC PATIENTS



Abstract

Introduction: Several in vitro and in vivo studies have found correspondence between transepicondylar axis (TEA) and mean helical axis (MHA) in healthy subjects. In addition some studies suggest that the use of MHA for rotational alignment of femoral implant may be more accurate than TEA. Ostheoarthritis (OA) may modify limb alignment and flexion axis, introducing a bias during kinematic acquisition. An in-vivo study comparing normal and osteoarthritic knees using MHA is still lacking. The purposes of this study were: to understand whether arthritis affects somehow the functional axis evaluation and then to assess whether the MHA could be considered as reference flexion axis also for osteoarthritic knees; starting from hypothesis that there is a correspondence between TEA and MHA, to evaluate whether in pathologic subjects there still is the same correspondence.

Material and Methods: We included a group of 15 OA patients undergoing TKA and, as control group, 60 patients that underwent ACL reconstruction, since in vivo studies reported small differences in kinematics between ACL reconstructed and uninjured limbs. With a surgical navigation system we recorded intraoperative kinematic data of different passive ranges of motion (PROM) and calculated the MHA applying a least square approach to the set of finite helical axes (FHA) obtained in three different ranges of motion (0°–120°; 35°–80°; 35°–120°). We compared the difference in orientation of MHA in the three ranges with respect to the TEA on frontal (XZ) and axial (XY) planes. The correlation of preoperative limb deformity with MHA-TEA angle was also performed.

Results: The results of difference of MHA-TEA angle between the OA and ACL groups for all the three ranges of flexion and in XZ and XY views showed no statistical difference (p=0.5188; p=0.7147 respectively). No statistical difference was found also about MHA-TEA angle between the three ranges in frontal and axial views (ANOVA p=0.6373; p=0.4183 respectively). There was no difference between the flexion and extension movements in the three ranges. We also found that correlation between limb alignment and MHA-TEA angle showed good correlation (r> 0.54, p< 0.001) in frontal view and fair correlation (r< 0.37, p< 0.05) in axial view for all ranges.

Conclusions: Our work has demonstrated that pathologic knees shows no differences in MHA orientation compared to nearly healthy subjects, moreover there is the same correspondence between TEA and MHA both in XZ and XY plane. We also found that preoperative limb alignment does not correlate with MHA-TEA angle. results are in agreement to studies on healthy subjects. Therefore the MHA may be considered a reliable reference for determining femoral flexion axis and a useful tool in the determination of femoral implant positioning on axial plane, even in surgical setup on osteoarthritic patients.

Correspondence should be addressed to: EFORT Central Office, Technoparkstrasse 1, CH – 8005 Zürich, Switzerland. Tel: +41 44 448 44 00; Email: office@efort.org

Author: Francesca Colle, Italy

E-mail: f.colle@biomec.ior.it