Abstract
For the treatment of the fractures of the proximal extremity of the femur two predominant systems exist: the intramedular nail and the sliding screw plate.
The variables at the moment, to be considered, are the weight, age and type of fracture. The principal aims are: To develop models of finite elements of both types of implants and of two types of fracture (stable and unstable), and to integrate the models of finite elements of the implants in the model of fractured femur, to obtain the mechanical behavior of both types of implants and them to fit to the model of finite elements.
The analyzed models have been the gamma-3 nail (Stryker, USA) and the PerCutaneus Compression Plate (PCCP), (Gotfried, Israel). The real geometry has been created in the program SolidWorks 11.0 to be treated later in the program of calculation by means of finite elements Ansys.
The assembly with nail is more rigid (11.51 mm) that with plate (11.95 mm) on having had a few minor displacements. The tensions that appear in the nail (446 MPa) are major that those of the plate (132.93 MPa), in the unstable fractures.
In the unstable fractures, the intramedular nail is more rigid than the system of plate. The tensions to which the nail meets submitted are superior to those of break for what the nail would not be capable of supporting the first cycles of load. It is for it, that the system to using in these cases would be the sliding screw plate.
Correspondence should be addressed to: EFORT Central Office, Technoparkstrasse 1, CH – 8005 Zürich, Switzerland. Tel: +41 44 448 44 00; Email: office@efort.org
Author: Victor Martin, Spain
E-mail: vmartinmoreno@hotmail.com