header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

COMPUTERIZED NAVIGATION FOR THE FIXATION OF FEMORAL NECK FRACTURES BY CANNULATED SCREWS ON THE BASIS OF ZERO-DOSE C-ARM NAVIGATION. A SAWBONE AND CADAVER STUDY



Abstract

Introduction: Femoral neck fractures are common and percutaneous insertion of three cannulated screws is an accepted method of surgical treatment. The accuracy of surgical performance is highly correlated with the cut-out percentages of the screws. The conventional technique relies heavily on fiuoroscopy and could lead to inappropriate implant placement. Further, multiple guidewire passes might prolong the operation time and weaken the cancellous bone. A computer-assisted planning and navigation system based on 2D-fiuoroscopy has been developed for guidewire insertion in order to perform insertion of a guidewire to perform screw insertion. The image acquisition process was supported by a radiation-saving procedure called “Zero-dose C-arm navigation”. The purpose of this experimental study was to compare this technique with conventional C-arm fiuoroscopy with respect to the number of fiuoroscopic images, the number of drilling attempts and operation time. We used two operative settings, with sawbones and with cadavers. For the sawbone study, we also compared the femoral neck and head perforation and the neck-width coverage (the relative area of the femoral neck held by screws).

Methods: Three cannulated hip screws were inserted into 12 femoral sawbones simulating femoral neck fractures and into 6 cadaveric femurs guided by the computer-based navigation. We compared them to the conventional fiuoroscopic technique also using 12 femoral sawbones and 6 cadaveric femurs.

Results: The computer-assisted technique significantly reduced the amount of intraoperative fiuoroscopy (sawbone study: P< 0.001; cadaver study: P< 0.001) and the number of guidewire passes (sawbone study: P< 0.05; cadaver study: P< 0.05) in the sawbone and the cadaver setting. Operation time was significantly longer (sawbone study: P< 0.001; cadaver study: P< 0.05) in the navigation assisted group also in both settings. In the sawbone study, there was no significant difference in the femoral neck and head perforation, whereas the relative neck area held by the screws was significantly (P< 0.05) larger than that in the conventional group.

Discussion: The addition of computer-assisted planning and surgical guidance supported by “Zero-dose C-arm navigation” may be useful for the fixation of femoral neck fractures by cannulated screws as it reduces the amount of intraoperative fiuoroscopy, requires fewer drill tracks and achieves a better neck coverage. Further studies with the goal of reducing the operation time by improving the learning curve are indispensable before integrating this navigation system into the clinical workfiow.

Correspondence should be addressed to: EFORT Central Office, Technoparkstrasse 1, CH – 8005 Zürich, Switzerland. Tel: +41 44 448 44 00; Email: office@efort.org

Author: Marcus Mueller, Germany

E-mail: marcus.mueller@ukb.uni-bonn.de