Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

ALIGNMENT AFTER NAVIGATED AND CONVENTIONAL TKA – A PROSPECTIVE, RANDOMIZED, CTCONTROLLED TRIAL



Abstract

Background: Computer-assisted navigation systems are supposed to improve the precision of implant positioning and therefore the longevity of the knee arthroplasty. Several studies have demonstrated a better mechanical axis or axial component alignment in navigated compared to conventional TKA at least less outliers from a range of 3° of varus or valgus. It is still unclear wether navigation can improve rotational alignment.

Materials and Methods: After informed consent 80 patients were randomized to navigated or conventional TKA. In all patients, a cemented, unconstrained, cruciate-retaining TKA with a rotating platform was implanted. A full-length standing and a lateral radiograph and CT Scans of the hip, knee and ankle joint were done 5 to 7 days postoperatively before discharge.

Results: The navigated group showed a median deviation from the mechanical axis of 1,5° with a range between 5,9° valgus and 4,6 varus malalignment. The conventional implanted arthroplasties showed a median deviation from the mechanical axis of 1,6° with a range between 5,9° valgus and 7,2° varus malalignment. 5 navigated and 7 conventional implanted arthroplasties were outside a tolerance level of 3°.

The femoral component showed a median deviation from the transepicondylar axis of 1,7° (range: 3,1° external rotation to 4,4° internal rotation) in the navigated group and of 1,0° (range: 3,4° external rotation to 4,3° internal rotation) in the conventional implantations.

The tibial component showed a much greater range of rotational deviation from the medial third of the tuberosity in median 5,3° (range: 14,9° external rotation to 26° internal rotation) in the navigated group and 4,8° (range: 6,5° external rotation to 23,8° internal rotation) in the conventional implantations.

Conclusion: We could not find a difference between Computer-assisted navigation and conventional implantation for rotational alignment of the femoral or tibial component. While the deviation from the transepicondylar axis was quite low and nearly all implantations were within a range of 3° of internal and external rotation there was a considerable range of deviation for the tibial rotational alignment.

Correspondence should be addressed to: EFORT Central Office, Technoparkstrasse 1, CH – 8005 Zürich, Switzerland. Email: office@efort.org