Abstract
Combined techniques of fracture mechanics and confocal Raman microprobe spectroscopy were applied to characterize, after increasing periods of environmental exposure, bulk and surface toughness values in an advanced alumina/zirconia composite. This material is used in joint prostheses (BIOLOX® delta femoral heads, manufactured by CeramTec AG). Besides conventional fracture mechanics characterizations, including different types of fracture toughness test, Raman and fluorescence microprobe spectroscopy provided a microscopic insight into the effect of environmentally assisted processes of zirconia phase transformation at the surface on the fracture toughness of the material. We have found that the tetragonal-to-monoclinic polymorphic transformation occurs in the studied composite material as a consequence of an environmentally assisted process, although severe exposures are needed for to obtain a substantial increase of the monoclinic content. Such severe exposures in vitro correspond to exposures in human body of several lifetimes. The effect of an exposure of 10 h in autoclave (in vitro accelerated test) was carefully examined, because this span of time corresponds:
-
to the period of time recommended for testing in vitro by ISO standard; and,
-
to approximately the lifetime expected for a prosthesis in vivo.
The main experimental outcomes of confocal Raman spectroscopy and fracture mechanics assessments can be summarized as follows:
-
the crack-tip toughness level measured in the as-received material was comprehensive of a tangible contribution by transformation toughening, thus showing that phase transformation in the zirconia dispersoids plays a positive role in the toughening behavior of the material;
-
after the material was environmentally aged in vitro for periods of the order of hundreds of hours, its surface toughness was reduced by about one-third; but, even in the case of such a severe exposure, the surface toughness of the composite was at least the same as that of monolithic alumina;
-
the observed decrease of fracture toughness by about one-third was limited to the very surface of the material (i.e., to a layer of the order of the tens of microns) and did not affect the bulk fracture behavior of the composite.
It appears that concerns arising from the brittleness of alumina-based materials and, thus, from their vulnerability to fracture due to unexpected load situation, can be successfully counteracted by properly adding a dispersion of zirconia particles to the alumina matrix. Such an addition enables the obtainment of a composite material, whose fracture resistance is greatly enhanced by a crack-shielding effect due to phase-transformation processes occurring in the zirconia dispersoids.
Correspondence should be addressed to ISTA Secretariat, PO Box 6564, Auburn, CA 95604, USA. Tel: 1-916-454-9884, Fax: 1-916-454-9882, Email: ista@pacbell.net