Abstract
Aseptic loosening caused by UHMWPE wear debris induced osteolysis is a major cause of revision in total hip arthroplasty (THA)1. While second generation hard-on-hard bearings, metal-on-metal (MOM) and ceramic-on-ceramic (COC), have been shown clinically to address the wear issues associated with conventional UHMWPE bearings, there remain some concerns over the potential effects of metal ions produced by MOM and the risk of liner fracture in COC. Recently, hybrid ceramic-on-metal (COM) articulation has received a great deal of attention as a promising alternative bearing.
Advantages include reduced wear and metal ion release compared with MOM. In addition, it is thought that there may be a reduced tendency for fracture of the ceramic component due to the softer metallic cup.
In this study a 5 million cycle wear test was carried out on the Mark II Durham Hip Wear Simulator. A set of six, 38mm diameter HIPed alumina heads and as-cast CoCr alloy cups were tested in bovine serum. Surface topography analysis was carried out at 0, 2, 3 and 5 million cycles. Additionally imaging of the bearing surfaces using ESEM and AFM was undertaken on the final bearing surface. Friction testing, using the Durham Hip Friction Simulator was carried out on one of the joints worn to 5 million cycles and the results were compared with theoretical calculations.
Wear of the ceramic heads was virtually undetectable using the conventional gravimetric methods. However, minor surface damage in the form of grain pull out and abrasive scratches was observed in the wear patch when the bearing surfaces were analysed using ESEM and AFM. The grains were not visible in the unworn sections of the head. The average surface roughness remained constant throughout the test. The CoCr cups showed a decrease in roughness between 0 and 2 million cycles, after which it remained relatively constant. This was consistent with the wear results in which a biphasic wear rate was found. The more frequently obtained wear results showed running in wear rate of 1.02±0.078 mm3/million cycles between 0–0.5 million cycles, followed by a steady state wear rate of 0.030±0.011 mm3/million cycles. These results are consistent with those of a recent study undertaken elsewhere2.
Friction testing produced a Stribeck curve which was indicative of full fluid film lubrication with a friction factor of 0.027±0.002 for 25% bovine serum (η=0.0014 Pa s-1). Other tests were also carried out using carboxy methyl cellulose fluid as the lubricant to investigate the effect of proteins. This showed that there was a small decrease in friction factor when proteins were absent from the lubricant. It is thought that the difference in friction factors is due to adsorption of the proteins onto the bearing surfaces, when lubricated in bovine serum. This introduces large proteins between the bearing surfaces, which penetrate the lubricant film, causing protein on protein interactions, in addition to the friction caused by shearing of the lubricant film.
Correspondence should be addressed to ISTA Secretariat, PO Box 6564, Auburn, CA 95604, USA. Tel: 1-916-454-9884, Fax: 1-916-454-9882, Email: ista@pacbell.net
1 Swedish Hip Arthroplasty Register, Annual Report 2006. Google Scholar
2 Ishida, T., I.C. Clarke, T. Sorimachi, H. Shirasu, T. Shishido, and K. Yamamoto. Ceramic-on Metal vs. Metal-on-Metal Bearings in Hip Simulator Studies. in 54th Annual Meeting of the Orthopaedic Research Society. 2008. San Francisco. Google Scholar