Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

DEVELOPMENT OF A MENISCUS REPLACEMENT



Abstract

Meniscectomy, induces osteoarthritis. Options for repair of a damaged meniscus are an allograft meniscus, an implant made of natural scaffold materials (the collagen meniscus implant; CMI) or an implant made of polymers.

Allograft menisci and the CMI are already clinically used for a considerably number of years. In this educational lecture the focus is on a comparison between the three implant types and the status of a tissue-engineered meniscus.

The allograft meniscus is already used for at least ten years. It is intended for the younger patient with a previous total meniscectomy, with moderate cartilage degeneration and with a good alignment of the knee. The clinical outcome is based on function and pain scores. In this lecture the functional scores, the survival rate and the histology of allograft menisci will be highlighted.

The CMI meniscus implant is intended for a different patient group. To enable implantation of the CMI the rim of the native meniscus should be intact. Patient series that should demonstrate the efficacy of this type of implant are still small and are mainly of the inventors of the implant. In general patients tolerated the implant well. Tissue ingrowth and remodelling into a fibro-cartilaginous tissue was found in animals and patients.

Polymers may be a good alternative for the allograft and CMI implant. Previously they were used to guide vascularized new repair tissue through an ingrowth channel to the avascular lesion. We developed a porous polymer meniscus scaffold with properties to allow tissue infiltration and regeneration of a neomeniscus. It was implanted in dog knees and compared with total meniscectomy. The tissue infiltration and redifferentiation in the scaffold, the stiffness of the scaffold, and the articular cartilage degeneration were evaluated.

Three months after implantation, the implant was completely filled with fibrovascular tissue. After 6 months, the central areas of the implant contained cartilage-like tissue with abundant collagen type II and proteoglycans in their matrix. The foreign-body reaction remained limited to a few giant cells in the implant. The compression modulus of the implant-tissue construct still differed significantly from that of the native meniscus, even at 6 months. Cartilage degeneration was observed both in the meniscectomy group and in the implant group.

The improved properties of these polymer implants resulted in a faster tissue infiltration and in phenotypical differentiation into tissue resembling that of the native meniscus. However, the material characteristics of the implant need to be improved to prevent degeneration of the articular cartilage.

Correspondence should be addressed to ISTA Secretariat, PO Box 6564, Auburn, CA 95604, USA. Tel: 1-916-454-9884, Fax: 1-916-454-9882, Email: ista@pacbell.net