Abstract
The influence of controlled mechanical loading on osseointegration was investigated using an in vivo device implanted in the distal lateral femur of five male rabbits. Compressive loads (1 MPa, 1 Hz, 50 cycles/day, 4 weeks) were applied to a porous coated titanium cylindrical implant (5mm diameter, 2mm width, 75% porosity, 350ìm average pore diameter) and the underlying cancellous bone.. The contralateral limb served as an unloaded control. MicroCT scans at 28 μm resolution were taken of a 4 × 4mm cylindrical region of interest that included cancellous bone below the implant. A scanning electron microscope with a backscattered electron (BSE) detector was used to quantify the percent bone ingrowth and periprosthetic bone in undecalcified sections through the same region of interest. A mixed effects model was used to account for the correlation of the outcome measures within rabbits.. The percent bone ingrowth was significantly greater in the loaded limb (19 +/− 4%) compared to the unloaded control limb (16 +/− 4%, p=0.016) as measured by BSE imaging. The underlying cancellous periprosthetic tissue bone volume fraction was not different between the loaded (0.26 +/− 0.06) and unloaded control limb (0.27 +/− 0.07, p=0.81) by microCT. BSE imaging also showed no difference in the percent area of periprosthetic bone (27 +/− 10% loaded vs. 23 +/− 10% unloaded, p=0.25). Cyclic mechanical loading significantly enhanced bone ingrowth into a titanium porous coated surface compared to the unloaded controls.
Correspondence should be addressed to Dr. D. Hak, Email: David.Hak@dhha.org